

The full text of this book lives online at gameprogrammingpatterns.com.

Copyright © 2014 by Robert Nystrom.

All rights reserved.

ISBN: 978-0-9905829-2-2

Acknowledgements
I’ve heard only other authors know what’s involved in writing a book, but there is another tribe who
know the precise weight of that burden — those with the misfortune of being in a relationship with a
writer. I wrote this in a space of time painstakingly carved from the dense rock of life for me by my
wife Megan. Washing dishes and giving the kids baths may not be “writing”, but without her doing
those, this book wouldn’t be here.

I started this project while a programmer at Electronic Arts. I don’t think the company knew quite
what to make of it, and I’m grateful to Michael Malone, Olivier Nallet, and Richard Wifall for
supporting it and providing detailed, insightful feedback on the first few chapters.

About halfway through writing, I decided to forgo a traditional publisher. I knew that meant losing the
guidance an editor brings, but I had email from dozens of readers telling me where they wanted the
book to go. I’d lose proofreaders, but I had over 250 bug reports to help improve the prose. I’d give
up the incentive of a writing schedule, but with readers patting my back when I finished each chapter,
I had more than enough motivation.

What I didn’t lose was a copy editor. Lauren Briese showed up just when I needed her and did a wonderful job.

They call this “self publishing”, but “crowd publishing” is closer to the mark. Writing can be lonely
work, but I was never alone. Even when I put the book on a shelf for two years, the encouragement
continued. Without the dozens of people who didn’t let me forget that they were waiting for more
chapters, I never would have picked it back up and finished.

Special thanks go to Colm Sloan who pored over every single chapter in the book twice and gave me mountains of fantastic feedback,
all out of the goodness of his own heart. I owe you a beer or twenty.

To everyone who emailed or commented, upvoted or favorited, tweeted or retweeted, anyone who
reached out to me, or told a friend about the book, or sent me a bug report: my heart is filled with
gratitude for you. Completing this book was one of my biggest goals in life, and you made it happen.

Thank you!

To Megan, for faith and time,
the two essential ingredients.

Contents
1. Introduction

1. Architecture, Performance, and Games
2. Design Patterns Revisited

2. Command
3. Flyweight
4. Observer
5. Prototype
6. Singleton
7. State

3. Sequencing Patterns
8. Double Buffer
9. Game Loop

10. Update Method
4. Behavioral Patterns

11. Bytecode
12. Subclass Sandbox
13. Type Object

5. Decoupling Patterns
14. Component
15. Event Queue
16. Service Locator

6. Optimization Patterns
17. Data Locality
18. Dirty Flag
19. Object Pool
20. Spatial Partition

Introduction
In fifth grade, my friends and I were given access to a little unused classroom housing a couple of
very beat-up TRS-80s. Hoping to inspire us, a teacher found a printout of some simple BASIC
programs for us to tinker with.

The audio cassette drives on the computers were broken, so any time we wanted to run some code,
we’d have to carefully type it in from scratch. This led us to prefer programs that were only a few
lines long:

10 PRINT "BOBBY IS RADICAL!!!"
20 GOTO 10

Maybe if the computer prints it enough times, it will magically become true.

Even so, the process was fraught with peril. We didn’t know how to program, so a tiny syntax error
was impenetrable to us. If the program didn’t work, which was often, we started over from the
beginning.

At the back of the stack of pages was a real monster: a program that took up several dense pages of
code. It took a while before we worked up the courage to even try it, but it was irresistible — the
title above the listing was “Tunnels and Trolls”. We had no idea what it did, but it sounded like a
game, and what could be cooler than a computer game that you programmed yourself?

We never did get it running, and after a year, we moved out of that classroom. (Much later when I
actually knew a bit of BASIC, I realized that it was just a character generator for the table-top game
and not a game in itself.) But the die was cast — from there on out, I wanted to be a game
programmer.

When I was in my teens, my family got a Macintosh with QuickBASIC and later THINK C. I spent
almost all of my summer vacations hacking together games. Learning on my own was slow and
painful. I’d get something up and running easily — maybe a map screen or a little puzzle — but as the
program grew, it got harder and harder.

Many of my summers were also spent catching snakes and turtles in the swamps of southern Louisiana. If it wasn’t so blisteringly hot
outside, there’s a good chance this would be a herpetology book instead of a programming one.

At first, the challenge was just getting something working. Then, it became figuring out how to write
programs bigger than what would fit in my head. Instead of just reading about “How to Program in
C++”, I started trying to find books about how to organize programs.

Fast-forward several years, and a friend hands me a book: Design Patterns: Elements of Reusable
Object-Oriented Software. Finally! The book I’d been looking for since I was a teenager. I read it
cover to cover in one sitting. I still struggled with my own programs, but it was such a relief to see
that other people struggled too and came up with solutions. I felt like I finally had a couple of tools to
use instead of just my bare hands.

This was the first time we’d met, and five minutes after being introduced, I sat down on his couch and spent the next few hours
completely ignoring him and reading. I’d like to think my social skills have improved at least a little since then.

In 2001, I landed my dream job: software engineer at Electronic Arts. I couldn’t wait to get a look at
some real games and see how the pros put them together. What was the architecture like for an
enormous game like Madden Football? How did the different systems interact? How did they get a
single codebase to run on multiple platforms?

Cracking open the source code was a humbling and surprising experience. There was brilliant code in
graphics, AI, animation, and visual effects. We had people who knew how to squeeze every last cycle
out of a CPU and put it to good use. Stuff I didn’t even know was possible, these people did before
lunch.

But the architecture this brilliant code hung from was often an afterthought. They were so focused on
features that organization went overlooked. Coupling was rife between modules. New features were
often bolted onto the codebase wherever they could be made to fit. To my disillusioned eyes, it
looked like many programmers, if they ever cracked open Design Patterns at all, never got past
Singleton.

Of course, it wasn’t really that bad. I’d imagined game programmers sitting in some ivory tower
covered in whiteboards, calmly discussing architectural minutiae for weeks on end. The reality was
that the code I was looking at was written by people working to meet intense deadlines. They did the
best they could, and, as I gradually realized, their best was often very good. The more time I spent
working on game code, the more bits of brilliance I found hiding under the surface.

Unfortunately, “hiding” was often a good description. There were gems buried in the code, but many
people walked right over them. I watched coworkers struggle to reinvent good solutions when
examples of exactly what they needed were nestled in the same codebase they were standing on.

That problem is what this book aims to solve. I dug up and polished the best patterns I’ve found in
games, and presented them here so that we can spend our time inventing new things instead of re-
inventing them.

What’s in Store
There are already dozens of game programming books out there. Why write another?

Most game programming books I’ve seen fall into one of two categories:

Domain-specific books. These narrowly-focused books give you a deep dive on some specific
aspect of game development. They’ll teach you about 3D graphics, real-time rendering, physics
simulation, artificial intelligence, or audio. These are the areas that many game programmers
specialize in as their careers progress.

Whole-engine books. In contrast, these try to span all of the different parts of an entire game
engine. They are oriented towards building a complete engine suited to some specific genre of
game, usually a 3D first-person shooter.

I like both of these kinds of books, but I think they leave some gaps. Books specific to a domain rarely
tell you how that chunk of code interacts with the rest of the game. You may be a wizard at physics
and rendering, but do you know how to tie them together gracefully?

The second category covers that, but I often find whole-engine books to be too monolithic and too
genre-specific. Especially with the rise of mobile and casual gaming, we’re in a period where lots of
different genres of games are being created. We aren’t all just cloning Quake anymore. Books that
walk you through a single engine aren’t helpful when your game doesn’t fit that mold.

Instead, what I’m trying to do here is more à la carte. Each of the chapters in this book is an
independent idea that you can apply to your code. This way, you can mix and match them in a way that
works best for the game you want to make.

Another example of this à la carte style is the widely beloved Game Programming Gems series.

http://www.satori.org/game-programming-gems/

How it Relates to Design Patterns
Any programming book with “Patterns” in its name clearly bears a relationship to the classic Design
Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (ominously called the “Gang of Four”).

Design Patterns itself was in turn inspired by a previous book. The idea of crafting a language of patterns to describe open-ended
solutions to problems comes from A Pattern Language, by Christopher Alexander (along with Sarah Ishikawa and Murray
Silverstein).

Their book was about architecture (like real architecture with buildings and walls and stuff), but they hoped others would use the
same structure to describe solutions in other fields. Design Patterns is the Gang of Four’s attempt to do that for software.

By calling this book “Game Programming Patterns”, I’m not trying to imply that the Gang of Four’s
book is inapplicable to games. On the contrary: the Design Patterns Revisited section of this book
covers many of the patterns from Design Patterns, but with an emphasis on how they can be applied
to game programming.

Conversely, I think this book is applicable to non-game software too. I could just as well have called
this book More Design Patterns, but I think games make for more engaging examples. Do you really
want to read yet another book about employee records and bank accounts?

That being said, while the patterns introduced here are useful in other software, I think they’re
particularly well-suited to engineering challenges commonly encountered in games:

Time and sequencing are often a core part of a game’s architecture. Things must happen in the
right order and at the right time.

Development cycles are highly compressed, and a number of programmers need to be able to
rapidly build and iterate on a rich set of different behavior without stepping on each other’s toes
or leaving footprints all over the codebase.

After all of this behavior is defined, it starts interacting. Monsters bite the hero, potions are
mixed together, and bombs blast enemies and friends alike. Those interactions must happen
without the codebase turning into an intertwined hairball.

And, finally, performance is critical in games. Game developers are in a constant race to see
who can squeeze the most out of their platform. Tricks for shaving off cycles can mean the
difference between an A-rated game and millions of sales or dropped frames and angry
reviewers.

http://en.wikipedia.org/wiki/A_Pattern_Language

How to Read the Book
Game Programming Patterns is divided into three broad sections. The first introduces and frames
the book. It’s the chapter you’re reading now along with the next one.

The second section, Design Patterns Revisited, goes through a handful of patterns from the Gang of
Four book. With each chapter, I give my spin on a pattern and how I think it relates to game
programming.

The last section is the real meat of the book. It presents thirteen design patterns that I’ve found useful.
They’re grouped into four categories: Sequencing Patterns, Behavioral Patterns, Decoupling Patterns,
and Optimization Patterns.

Each of these patterns is described using a consistent structure so that you can use this book as a
reference and quickly find what you need:

The Intent section provides a snapshot description of the pattern in terms of the problem it
intends to solve. This is first so that you can hunt through the book quickly to find a pattern that
will help you with your current struggle.

The Motivation section describes an example problem that we will be applying the pattern to.
Unlike concrete algorithms, a pattern is usually formless unless applied to some specific
problem. Teaching a pattern without an example is like teaching baking without mentioning
dough. This section provides the dough that the later sections will bake.

The Pattern section distills the essence of the pattern out of the previous example. If you want a
dry textbook description of the pattern, this is it. It’s also a good refresher if you’re familiar with
a pattern already and want to make sure you don’t forget an ingredient.

So far, the pattern has only been explained in terms of a single example. But how do you know if
the pattern will be good for your problem? The When to Use It section provides some
guidelines on when the pattern is useful and when it’s best avoided. The Keep in Mind section
points out consequences and risks when using the pattern.

If, like me, you need concrete examples to really get something, then Sample Code is your
section. It walks step by step through a full implementation of the pattern so you can see exactly
how it works.

Patterns differ from single algorithms because they are open-ended. Each time you use a pattern,
you’ll likely implement it differently. The next section, Design Decisions, explores that space
and shows you different options to consider when applying a pattern.

To wrap it up, there’s a short See Also section that shows how this pattern relates to others and
points you to real-world open source code that uses it.

About the Sample Code
Code samples in this book are in C++, but that isn’t to imply that these patterns are only useful in that
language or that C++ is a better language for them than others. Almost any language will work fine,
though some patterns do tend to presume your language has objects and classes.

I chose C++ for a couple of reasons. First, it’s the most popular language for commercially shipped
games. It is the lingua franca of the industry. Moreso, the C syntax that C++ is based on is also the
basis for Java, C#, JavaScript, and many other languages. Even if you don’t know C++, the odds are
good you can understand the code samples here with a little bit of effort.

The goal of this book is not to teach you C++. The samples are kept as simple as possible and don’t
represent good C++ style or usage. Read the code samples for the idea being expressed, not the code
expressing it.

In particular, the code is not written in “modern” — C++11 or newer — style. It does not use the
standard library and rarely uses templates. This makes for “bad” C++ code, but I hope that by keeping
it stripped down, it will be more approachable to people coming from C, Objective-C, Java, and
other languages.

To avoid wasting space on code you’ve already seen or that isn’t relevant to the pattern, code will
sometimes be omitted in examples. When this occurs, an ellipsis will be placed in the sample to show
where the missing code goes.

Consider a function that will do some work and then return a value. The pattern being explained is
only concerned with the return value, and not the work being done. In that case, the sample code will
look like:

bool update()
{
 // Do work...
 return isDone();
}

Where to Go From Here
Patterns are a constantly changing and expanding part of software development. This book continues
the process started by the Gang of Four of documenting and sharing the software patterns they saw,
and that process will continue after the ink dries on these pages.

You are a core part of that process. As you develop your own patterns and refine (or refute!) the
patterns in this book, you contribute to the software community. If you have suggestions, corrections,
or other feedback about what’s in here, please get in touch!

Architecture, Performance, and Games
Before we plunge headfirst into a pile of patterns, I thought it might help to give you some context
about how I think about software architecture and how it applies to games. It may help you understand
the rest of this book better. If nothing else, when you get dragged into an argument about how terrible
(or awesome) design patterns and software architecture are, it will give you some ammo to use.

Note that I didn’t presume which side you’re taking in that fight. Like any arms dealer, I have wares for sale to all combatants.

What is Software Architecture?
If you read this book cover to cover, you won’t come away knowing the linear algebra behind 3D
graphics or the calculus behind game physics. It won’t show you how to alpha-beta prune your AI’s
search tree or simulate a room’s reverberation in your audio playback.

Wow, this paragraph would make a terrible ad for the book.

Instead, this book is about the code between all of that. It’s less about writing code than it is about
organizing it. Every program has some organization, even if it’s just “jam the whole thing into
main() and see what happens”, so I think it’s more interesting to talk about what makes for good
organization. How do we tell a good architecture from a bad one?

I’ve been mulling over this question for about five years. Of course, like you, I have an intuition about
good design. We’ve all suffered through codebases so bad, the best you could hope to do for them is
take them out back and put them out of their misery.

Let’s admit it, most of us are responsible for a few of those.

A lucky few have had the opposite experience, a chance to work with beautifully designed code. The
kind of codebase that feels like a perfectly appointed luxury hotel festooned with concierges waiting
eagerly on your every whim. What’s the difference between the two?

What is good software architecture?

For me, good design means that when I make a change, it’s as if the entire program was crafted in
anticipation of it. I can solve a task with just a few choice function calls that slot in perfectly, leaving
not the slightest ripple on the placid surface of the code.

That sounds pretty, but it’s not exactly actionable. “Just write your code so that changes don’t disturb
its placid surface.” Right.

Let me break that down a bit. The first key piece is that architecture is about change. Someone has
to be modifying the codebase. If no one is touching the code — whether because it’s perfect and
complete or so wretched no one will sully their text editor with it — its design is irrelevant. The
measure of a design is how easily it accommodates changes. With no changes, it’s a runner who never
leaves the starting line.

How do you make a change?

Before you can change the code to add a new feature, to fix a bug, or for whatever reason caused you
to fire up your editor, you have to understand what the existing code is doing. You don’t have to know
the whole program, of course, but you need to load all of the relevant pieces of it into your primate

brain.

It’s weird to think that this is literally an OCR process.

We tend to gloss over this step, but it’s often the most time-consuming part of programming. If you
think paging some data from disk into RAM is slow, try paging it into a simian cerebrum over a pair
of optical nerves.

Once you’ve got all the right context into your wetware, you think for a bit and figure out your
solution. There can be a lot of back and forth here, but often this is relatively straightforward. Once
you understand the problem and the parts of the code it touches, the actual coding is sometimes trivial.

You beat your meaty fingers on the keyboard for a while until the right colored lights blink on screen
and you’re done, right? Not just yet! Before you write tests and send it off for code review, you often
have some cleanup to do.

Did I say “tests”? Oh, yes, I did. It’s hard to write unit tests for some game code, but a large fraction of the codebase is perfectly
testable.

I won’t get on a soapbox here, but I’ll ask you to consider doing more automated testing if you aren’t already. Don’t you have better
things to do than manually validate stuff over and over again?

You jammed a bit more code into your game, but you don’t want the next person to come along to trip
over the wrinkles you left throughout the source. Unless the change is minor, there’s usually a bit of
reorganization to do to make your new code integrate seamlessly with the rest of the program. If you
do it right, the next person to come along won’t be able to tell when any line of code was written.

In short, the flow chart for programming is something like:

The fact that there is no escape from that loop is a little alarming now that I think about it.

How can decoupling help?

While it isn’t obvious, I think much of software architecture is about that learning phase. Loading
code into neurons is so painfully slow that it pays to find strategies to reduce the volume of it. This
book has an entire section on decoupling patterns, and a large chunk of Design Patterns is about the
same idea.

You can define “decoupling” a bunch of ways, but I think if two pieces of code are coupled, it means
you can’t understand one without understanding the other. If you de-couple them, you can reason about
either side independently. That’s great because if only one of those pieces is relevant to your
problem, you just need to load it into your monkey brain and not the other half too.

To me, this is a key goal of software architecture: minimize the amount of knowledge you need to
have in-cranium before you can make progress.

The later stages come into play too, of course. Another definition of decoupling is that a change to
one piece of code doesn’t necessitate a change to another. We obviously need to change something,
but the less coupling we have, the less that change ripples throughout the rest of the game.

At What Cost?
This sounds great, right? Decouple everything and you’ll be able to code like the wind. Each change
will mean touching only one or two select methods, and you can dance across the surface of the
codebase leaving nary a shadow.

This feeling is exactly why people get excited about abstraction, modularity, design patterns, and
software architecture. A well-architected program really is a joyful experience to work in, and
everyone loves being more productive. Good architecture makes a huge difference in productivity.
It’s hard to overstate how profound an effect it can have.

But, like all things in life, it doesn’t come free. Good architecture takes real effort and discipline.
Every time you make a change or implement a feature, you have to work hard to integrate it gracefully
into the rest of the program. You have to take great care to both organize the code well and keep it
organized throughout the thousands of little changes that make up a development cycle.

The second half of this — maintaining your design — deserves special attention. I’ve seen many programs start out beautifully and
then die a death of a thousand cuts as programmers add “just one tiny little hack” over and over again.

Like gardening, it’s not enough to put in new plants. You must also weed and prune.

You have to think about which parts of the program should be decoupled and introduce abstractions at
those points. Likewise, you have to determine where extensibility should be engineered in so future
changes are easier to make.

People get really excited about this. They envision future developers (or just their future self)
stepping into the codebase and finding it open-ended, powerful, and just beckoning to be extended.
They imagine The One Game Engine To Rule Them All.

But this is where it starts to get tricky. Whenever you add a layer of abstraction or a place where
extensibility is supported, you’re speculating that you will need that flexibility later. You’re adding
code and complexity to your game that takes time to develop, debug, and maintain.

That effort pays off if you guess right and end up touching that code later. But predicting the future is
hard, and when that modularity doesn’t end up being helpful, it quickly becomes actively harmful.
After all, it is more code you have to deal with.

Some folks coined the term “YAGNI” — You aren’t gonna need it — as a mantra to use to fight this urge to speculate about what
your future self may want.

When people get overzealous about this, you get a codebase whose architecture has spiraled out of
control. You’ve got interfaces and abstractions everywhere. Plug-in systems, abstract base classes,
virtual methods galore, and all sorts of extension points.

It takes you forever to trace through all of that scaffolding to find some real code that does something.
When you need to make a change, sure, there’s probably an interface there to help, but good luck

http://en.wikipedia.org/wiki/You_aren't_gonna_need_it

finding it. In theory, all of this decoupling means you have less code to understand before you can
extend it, but the layers of abstraction themselves end up filling your mental scratch disk.

Codebases like this are what turn people against software architecture, and design patterns in
particular. It’s easy to get so wrapped up in the code itself that you lose sight of the fact that you’re
trying to ship a game. The siren song of extensibility sucks in countless developers who spend years
working on an “engine” without ever figuring out what it’s an engine for.

Performance and Speed
There’s another critique of software architecture and abstraction that you hear sometimes, especially
in game development: that it hurts your game’s performance. Many patterns that make your code more
flexible rely on virtual dispatch, interfaces, pointers, messages, and other mechanisms that all have at
least some runtime cost.

One interesting counter-example is templates in C++. Template metaprogramming can sometimes give you the abstraction of
interfaces without any penalty at runtime.

There’s a spectrum of flexibility here. When you write code to call a concrete method in some class, you’re fixing that class at author
time — you’ve hard-coded which class you call into. When you go through a virtual method or interface, the class that gets called isn’t
known until runtime. That’s much more flexible but implies some runtime overhead.

Template metaprogramming is somewhere between the two. There, you make the decision of which class to call at compile time
when the template is instantiated.

There’s a reason for this. A lot of software architecture is about making your program more flexible.
It’s about making it take less effort to change it. That means encoding fewer assumptions in the
program. You use interfaces so that your code works with any class that implements it instead of just
the one that does today. You use observers and messaging to let two parts of the game talk to each
other so that tomorrow, it can easily be three or four.

But performance is all about assumptions. The practice of optimization thrives on concrete
limitations. Can we safely assume we’ll never have more than 256 enemies? Great, we can pack an
ID into a single byte. Will we only call a method on one concrete type here? Good, we can statically
dispatch or inline it. Are all of the entities going to be the same class? Great, we can make a nice
contiguous array of them.

This doesn’t mean flexibility is bad, though! It lets us change our game quickly, and development
speed is absolutely vital for getting to a fun experience. No one, not even Will Wright, can come up
with a balanced game design on paper. It demands iteration and experimentation.

The faster you can try out ideas and see how they feel, the more you can try and the more likely you
are to find something great. Even after you’ve found the right mechanics, you need plenty of time for
tuning. A tiny imbalance can wreck the fun of a game.

There’s no easy answer here. Making your program more flexible so you can prototype faster will
have some performance cost. Likewise, optimizing your code will make it less flexible.

My experience, though, is that it’s easier to make a fun game fast than it is to make a fast game fun.
One compromise is to keep the code flexible until the design settles down and then tear out some of
the abstraction later to improve your performance.

The Good in Bad Code
That brings me to the next point which is that there’s a time and place for different styles of coding.
Much of this book is about making maintainable, clean code, so my allegiance is pretty clearly to
doing things the “right” way, but there’s value in slapdash code too.

Writing well-architected code takes careful thought, and that translates to time. Moreso, maintaining
a good architecture over the life of a project takes a lot of effort. You have to treat your codebase like
a good camper does their campsite: always try to leave it a little better than you found it.

This is good when you’re going to be living in and working on that code for a long time. But, like I
mentioned earlier, game design requires a lot of experimentation and exploration. Especially early
on, it’s common to write code that you know you’ll throw away.

If you just want to find out if some gameplay idea plays right at all, architecting it beautifully means
burning more time before you actually get it on screen and get some feedback. If it ends up not
working, that time spent making the code elegant goes to waste when you delete it.

Prototyping — slapping together code that’s just barely functional enough to answer a design
question — is a perfectly legitimate programming practice. There is a very large caveat, though. If
you write throwaway code, you must ensure you’re able to throw it away. I’ve seen bad managers
play this game time and time again:

Boss: “Hey, we’ve got this idea that we want to try out. Just a prototype, so don’t feel you need
to do it right. How quickly can you slap something together?”

Dev: “Well, if I cut lots of corners, don’t test it, don’t document it, and it has tons of bugs, I can
give you some temp code in a few days.”

Boss: “Great!”

A few days pass…

Boss: “Hey, that prototype is great. Can you just spend a few hours cleaning it up a bit now and
we’ll call it the real thing?”

You need to make sure the people using the throwaway code understand that even though it kind of
looks like it works, it cannot be maintained and must be rewritten. If there’s a chance you’ll end up
having to keep it around, you may have to defensively write it well.

One trick to ensuring your prototype code isn’t obliged to become real code is to write it in a language different from the one your
game uses. That way, you have to rewrite it before it can end up in your actual game.

Striking a Balance
We have a few forces in play:

1. We want nice architecture so the code is easier to understand over the lifetime of the project.
2. We want fast runtime performance.
3. We want to get today’s features done quickly.

I think it’s interesting that these are all about some kind of speed: our long-term development speed, the game’s execution speed, and
our short-term development speed.

These goals are at least partially in opposition. Good architecture improves productivity over the
long term, but maintaining it means every change requires a little more effort to keep things clean.

The implementation that’s quickest to write is rarely the quickest to run. Instead, optimization takes
significant engineering time. Once it’s done, it tends to calcify the codebase: highly optimized code is
inflexible and very difficult to change.

There’s always pressure to get today’s work done today and worry about everything else tomorrow.
But if we cram in features as quickly as we can, our codebase will become a mess of hacks, bugs, and
inconsistencies that saps our future productivity.

There’s no simple answer here, just trade-offs. From the email I get, this disheartens a lot of people.
Especially for novices who just want to make a game, it’s intimidating to hear, “There is no right
answer, just different flavors of wrong.”

But, to me, this is exciting! Look at any field that people dedicate careers to mastering, and in the
center you will always find a set of intertwined constraints. After all, if there was an easy answer,
everyone would just do that. A field you can master in a week is ultimately boring. You don’t hear of
someone’s distinguished career in ditch digging.

Maybe you do; I didn’t research that analogy. For all I know, there could be avid ditch digging hobbyists, ditch digging conventions,
and a whole subculture around it. Who am I to judge?

To me, this has much in common with games themselves. A game like chess can never be mastered
because all of the pieces are so perfectly balanced against one another. This means you can spend
your life exploring the vast space of viable strategies. A poorly designed game collapses to the one
winning tactic played over and over until you get bored and quit.

Simplicity
Lately, I feel like if there is any method that eases these constraints, it’s simplicity. In my code today,
I try very hard to write the cleanest, most direct solution to the problem. The kind of code where after
you read it, you understand exactly what it does and can’t imagine any other possible solution.

I aim to get the data structures and algorithms right (in about that order) and then go from there. I find
if I can keep things simple, there’s less code overall. That means less code to load into my head in
order to change it.

It often runs fast because there’s simply not as much overhead and not much code to execute. (This
certainly isn’t always the case though. You can pack a lot of looping and recursion in a tiny amount of
code.)

However, note that I’m not saying simple code takes less time to write. You’d think it would since
you end up with less total code, but a good solution isn’t an accretion of code, it’s a distillation of it.

Blaise Pascal famously ended a letter with, “I would have written a shorter letter, but I did not have the time.”

Another choice quote comes from Antoine de Saint-Exupery: “Perfection is achieved, not when there is nothing more to add, but when
there is nothing left to take away.”

Closer to home, I’ll note that every time I revise a chapter in this book, it gets shorter. Some chapters are tightened by 20% by the
time they’re done.

We’re rarely presented with an elegant problem. Instead, it’s a pile of use cases. You want the X to
do Y when Z, but W when A, and so on. In other words, a long list of different example behaviors.

The solution that takes the least mental effort is to just code up those use cases one at a time. If you
look at novice programmers, that’s what they often do: they churn out reams of conditional logic for
each case that popped into their head.

But there’s nothing elegant in that, and code in that style tends to fall over when presented with input
even slightly different than the examples the coder considered. When we think of elegant solutions,
what we often have in mind is a general one: a small bit of logic that still correctly covers a large
space of use cases.

Finding that is a bit like pattern matching or solving a puzzle. It takes effort to see through the
scattering of example use cases to find the hidden order underlying them all. It’s a great feeling when
you pull it off.

Get On With It, Already
Almost everyone skips the introductory chapters, so I congratulate you on making it this far. I don’t
have much in return for your patience, but I’ll offer up a few bits of advice that I hope may be useful
to you:

Abstraction and decoupling make evolving your program faster and easier, but don’t waste time
doing them unless you’re confident the code in question needs that flexibility.

Think about and design for performance throughout your development cycle, but put off the low-
level, nitty-gritty optimizations that lock assumptions into your code until as late as possible.

Trust me, two months before shipping is not when you want to start worrying about that nagging little “game only runs at 1 FPS”
problem.

Move quickly to explore your game’s design space, but don’t go so fast that you leave a mess
behind you. You’ll have to live with it, after all.

If you are going to ditch code, don’t waste time making it pretty. Rock stars trash hotel rooms
because they know they’re going to check out the next day.

But, most of all, if you want to make something fun, have fun making it.

Design Patterns Revisited
Design Patterns: Elements of Reusable Object-Oriented Software is nearly twenty years old by my
watch. Unless you’re looking over my shoulder, there’s a good chance Design Patterns will be old
enough to drink by the time you read this. For an industry as quickly moving as software, that’s
practically ancient. The enduring popularity of the book says something about how timeless design is
compared to many frameworks and methodologies.

While I think Design Patterns is still relevant, we’ve learned a lot in the past couple of decades. In
this section, we’ll walk through a handful of the original patterns the Gang of Four documented. For
each pattern, I hope to have something useful or interesting to say.

I think some patterns are overused (Singleton), while others are underappreciated (Command). A
couple are in here because I want to explore their relevance specifically to games (Flyweight and
Observer). Finally, sometimes I just think it’s fun to see how patterns are enmeshed in the larger field
of programming (Prototype and State).

The Patterns
Command
Flyweight
Observer
Prototype
Singleton
State

Command
Command is one of my favorite patterns. Most large programs I write, games or otherwise, end up
using it somewhere. When I’ve used it in the right place, it’s neatly untangled some really gnarly
code. For such a swell pattern, the Gang of Four has a predictably abstruse description:

Encapsulate a request as an object, thereby letting users parameterize clients with different
requests, queue or log requests, and support undoable operations.

I think we can all agree that that’s a terrible sentence. First of all, it mangles whatever metaphor it’s
trying to establish. Outside of the weird world of software where words can mean anything, a “client”
is a person — someone you do business with. Last I checked, human beings can’t be
“parameterized”.

Then, the rest of that sentence is just a list of stuff you could maybe possibly use the pattern for. Not
very illuminating unless your use case happens to be in that list. My pithy tagline for the Command
pattern is:

A command is a reified method call.

“Reify” comes from the Latin “res”, for “thing”, with the English suffix “–fy”. So it basically means “thingify”, which, honestly, would
be a more fun word to use.

Of course, “pithy” often means “impenetrably terse”, so this may not be much of an improvement. Let
me unpack that a bit. “Reify”, in case you’ve never heard it, means “make real”. Another term for
reifying is making something “first-class”.

Reflection systems in some languages let you work with the types in your program imperatively at runtime. You can get an object that
represents the class of some other object, and you can play with that to see what the type can do. In other words, reflection is a
reified type system.

Both terms mean taking some concept and turning it into a piece of data — an object — that you can
stick in a variable, pass to a function, etc. So by saying the Command pattern is a “reified method
call”, what I mean is that it’s a method call wrapped in an object.

That sounds a lot like a “callback”, “first-class function”, “function pointer”, “closure”, or “partially
applied function” depending on which language you’re coming from, and indeed those are all in the
same ballpark. The Gang of Four later says:

Commands are an object-oriented replacement for callbacks.

That would be a better slugline for the pattern than the one they chose.

But all of this is abstract and nebulous. I like to start chapters with something concrete, and I blew
that. To make up for it, from here on out it’s all examples where commands are a brilliant fit.

Configuring Input
Somewhere in every game is a chunk of code that reads in raw user input — button presses, keyboard
events, mouse clicks, whatever. It takes each input and translates it to a meaningful action in the game:

A dead simple implementation looks like:

void InputHandler::handleInput()
{
 if (isPressed(BUTTON_X)) jump();
 else if (isPressed(BUTTON_Y)) fireGun();
 else if (isPressed(BUTTON_A)) swapWeapon();
 else if (isPressed(BUTTON_B)) lurchIneffectively();
}

Pro tip: Don’t press B very often.

This function typically gets called once per frame by the game loop, and I’m sure you can figure out
what it does. This code works if we’re willing to hard-wire user inputs to game actions, but many
games let the user configure how their buttons are mapped.

To support that, we need to turn those direct calls to jump() and fireGun() into something that we
can swap out. “Swapping out” sounds a lot like assigning a variable, so we need an object that we
can use to represent a game action. Enter: the Command pattern.

We define a base class that represents a triggerable game command:

class Command
{
public:
 virtual ~Command() {}
 virtual void execute() = 0;
};

When you have an interface with a single method that doesn’t return anything, there’s a good chance it’s the Command pattern.

Then we create subclasses for each of the different game actions:

class JumpCommand : public Command

{
public:
 virtual void execute() { jump(); }
};

class FireCommand : public Command
{
public:
 virtual void execute() { fireGun(); }
};

// You get the idea...

In our input handler, we store a pointer to a command for each button:

class InputHandler
{
public:
 void handleInput();

 // Methods to bind commands...

private:
 Command* buttonX_;
 Command* buttonY_;
 Command* buttonA_;
 Command* buttonB_;
};

Now the input handling just delegates to those:

void InputHandler::handleInput()
{
 if (isPressed(BUTTON_X)) buttonX_->execute();
 else if (isPressed(BUTTON_Y)) buttonY_->execute();
 else if (isPressed(BUTTON_A)) buttonA_->execute();
 else if (isPressed(BUTTON_B)) buttonB_->execute();
}

Notice how we don’t check for NULL here? This assumes each button will have some command wired up to it.

If we want to support buttons that do nothing without having to explicitly check for NULL, we can define a command class whose
execute() method does nothing. Then, instead of setting a button handler to NULL, we point it to that object. This is a pattern called
Null Object.

Where each input used to directly call a function, now there’s a layer of indirection:

http://en.wikipedia.org/wiki/Null_Object_pattern

This is the Command pattern in a nutshell. If you can see the merit of it already, consider the rest of
this chapter a bonus.

Directions for Actors
The command classes we just defined work for the previous example, but they’re pretty limited. The
problem is that they assume there are these top-level jump(), fireGun(), etc. functions that
implicitly know how to find the player’s avatar and make him dance like the puppet he is.

That assumed coupling limits the usefulness of those commands. The only thing the JumpCommand can
make jump is the player. Let’s loosen that restriction. Instead of calling functions that find the
commanded object themselves, we’ll pass in the object that we want to order around:

class Command
{
public:
 virtual ~Command() {}
 virtual void execute(GameActor& actor) = 0;
};

Here, GameActor is our “game object” class that represents a character in the game world. We pass it
in to execute() so that the derived command can invoke methods on an actor of our choice, like so:

class JumpCommand : public Command
{
public:
 virtual void execute(GameActor& actor)
 {
 actor.jump();
 }
};

Now, we can use this one class to make any character in the game hop around. We’re just missing a
piece between the input handler and the command that takes the command and invokes it on the right
object. First, we change handleInput() so that it returns commands:

Command* InputHandler::handleInput()
{
 if (isPressed(BUTTON_X)) return buttonX_;
 if (isPressed(BUTTON_Y)) return buttonY_;
 if (isPressed(BUTTON_A)) return buttonA_;
 if (isPressed(BUTTON_B)) return buttonB_;

 // Nothing pressed, so do nothing.
 return NULL;
}

It can’t execute the command immediately since it doesn’t know what actor to pass in. Here’s where
we take advantage of the fact that the command is a reified call — we can delay when the call is
executed.

Then, we need some code that takes that command and runs it on the actor representing the player.
Something like:

Command* command = inputHandler.handleInput();
if (command)
{
 command->execute(actor);

}

Assuming actor is a reference to the player’s character, this correctly drives him based on the user’s
input, so we’re back to the same behavior we had in the first example. But adding a layer of
indirection between the command and the actor that performs it has given us a neat little ability: we
can let the player control any actor in the game now by changing the actor we execute the
commands on.

In practice, that’s not a common feature, but there is a similar use case that does pop up frequently. So
far, we’ve only considered the player-driven character, but what about all of the other actors in the
world? Those are driven by the game’s AI. We can use this same command pattern as the interface
between the AI engine and the actors; the AI code simply emits Command objects.

The decoupling here between the AI that selects commands and the actor code that performs them
gives us a lot of flexibility. We can use different AI modules for different actors. Or we can mix and
match AI for different kinds of behavior. Want a more aggressive opponent? Just plug-in a more
aggressive AI to generate commands for it. In fact, we can even bolt AI onto the player’s character,
which can be useful for things like demo mode where the game needs to run on auto-pilot.

By making the commands that control an actor first-class objects, we’ve removed the tight coupling of
a direct method call. Instead, think of it as a queue or stream of commands:

For lots more on what queueing can do for you, see Event Queue.

Why did I feel the need to draw a picture of a “stream” for you? And why does it look like a tube?

Some code (the input handler or AI) produces commands and places them in the stream. Other code
(the dispatcher or actor itself) consumes commands and invokes them. By sticking that queue in the
middle, we’ve decoupled the producer on one end from the consumer on the other.

If we take those commands and make them serializable, we can send the stream of them over the network. We can take the
player’s input, push it over the network to another machine, and then replay it. That’s one important piece of making a networked
multi-player game.

Undo and Redo
The final example is the most well-known use of this pattern. If a command object can do things, it’s a
small step for it to be able to undo them. Undo is used in some strategy games where you can roll
back moves that you didn’t like. It’s de rigueur in tools that people use to create games. The surest
way to make your game designers hate you is giving them a level editor that can’t undo their fat-
fingered mistakes.

I may be speaking from experience here.

Without the Command pattern, implementing undo is surprisingly hard. With it, it’s a piece of cake.
Let’s say we’re making a single-player, turn-based game and we want to let users undo moves so they
can focus more on strategy and less on guesswork.

We’re conveniently already using commands to abstract input handling, so every move the player
makes is already encapsulated in them. For example, moving a unit may look like:

class MoveUnitCommand : public Command
{
public:
 MoveUnitCommand(Unit* unit, int x, int y)
 : unit_(unit),
 x_(x),
 y_(y)
 {}

 virtual void execute()
 {
 unit_->moveTo(x_, y_);
 }

private:
 Unit* unit_;
 int x_, y_;
};

Note this is a little different from our previous commands. In the last example, we wanted to abstract
the command from the actor that it modified. In this case, we specifically want to bind it to the unit
being moved. An instance of this command isn’t a general “move something” operation that you could
use in a bunch of contexts; it’s a specific concrete move in the game’s sequence of turns.

This highlights a variation in how the Command pattern gets implemented. In some cases, like our
first couple of examples, a command is a reusable object that represents a thing that can be done.
Our earlier input handler held on to a single command object and called its execute() method
anytime the right button was pressed.

Here, the commands are more specific. They represent a thing that can be done at a specific point in
time. This means that the input handling code will be creating an instance of this every time the
player chooses a move. Something like:

Command* handleInput()
{

 Unit* unit = getSelectedUnit();

 if (isPressed(BUTTON_UP)) {
 // Move the unit up one.
 int destY = unit->y() - 1;
 return new MoveUnitCommand(unit, unit->x(), destY);
 }

 if (isPressed(BUTTON_DOWN)) {
 // Move the unit down one.
 int destY = unit->y() + 1;
 return new MoveUnitCommand(unit, unit->x(), destY);
 }

 // Other moves...

 return NULL;
}

Of course, in a non-garbage-collected language like C++, this means the code executing commands will also be responsible for freeing
their memory.

The fact that commands are one-use-only will come to our advantage in a second. To make commands
undoable, we define another operation each command class needs to implement:

class Command
{
public:
 virtual ~Command() {}
 virtual void execute() = 0;
 virtual void undo() = 0;
};

An undo() method reverses the game state changed by the corresponding execute() method. Here’s
our previous move command with undo support:

class MoveUnitCommand : public Command
{
public:
 MoveUnitCommand(Unit* unit, int x, int y)
 : unit_(unit),
 xBefore_(0),
 yBefore_(0),
 x_(x),
 y_(y)
 {}

 virtual void execute()
 {
 // Remember the unit's position before the move
 // so we can restore it.
 xBefore_ = unit_->x();
 yBefore_ = unit_->y();

 unit_->moveTo(x_, y_);
 }

 virtual void undo()
 {
 unit_->moveTo(xBefore_, yBefore_);
 }

private:
 Unit* unit_;
 int xBefore_, yBefore_;

 int x_, y_;
};

Note that we added some more state to the class. When a unit moves, it forgets where it used to be. If
we want to be able to undo that move, we have to remember the unit’s previous position ourselves,
which is what xBefore_ and yBefore_ do.

This seems like a place for the Memento pattern, but I haven’t found it to work well. Since commands tend to modify only a small part
of an object’s state, snapshotting the rest of its data is a waste of memory. It’s cheaper to manually store only the bits you change.

Persistent data structures are another option. With these, every modification to an object returns a new one, leaving the original
unchanged. Through clever implementation, these new objects share data with the previous ones, so it’s much cheaper than cloning
the entire object.

Using a persistent data structure, each command stores a reference to the object before the command was performed, and undo just
means switching back to the old object.

To let the player undo a move, we keep around the last command they executed. When they bang on
Control-Z, we call that command’s undo() method. (If they’ve already undone, then it becomes
“redo” and we execute the command again.)

Supporting multiple levels of undo isn’t much harder. Instead of remembering the last command, we
keep a list of commands and a reference to the “current” one. When the player executes a command,
we append it to the list and point “current” at it.

When the player chooses “Undo”, we undo the current command and move the current pointer back.
When they choose “Redo”, we advance the pointer and then execute that command. If they choose a
new command after undoing some, everything in the list after the current command is discarded.

The first time I implemented this in a level editor, I felt like a genius. I was astonished at how
straightforward it was and how well it worked. It takes discipline to make sure every data
modification goes through a command, but once you do that, the rest is easy.

Redo may not be common in games, but re-play is. A naïve implementation would record the entire game state at each frame so it
can be replayed, but that would use too much memory.

Instead, many games record the set of commands every entity performed each frame. To replay the game, the engine just runs the
normal game simulation, executing the pre-recorded commands.

http://en.wikipedia.org/wiki/Memento_pattern
http://en.wikipedia.org/wiki/Persistent_data_structure

Classy and Dysfunctional?
Earlier, I said commands are similar to first-class functions or closures, but every example I showed
here used class definitions. If you’re familiar with functional programming, you’re probably
wondering where the functions are.

I wrote the examples this way because C++ has pretty limited support for first-class functions.
Function pointers are stateless, functors are weird and still require defining a class, and the lambdas
in C++11 are tricky to work with because of manual memory management.

That’s not to say you shouldn’t use functions for the Command pattern in other languages. If you have
the luxury of a language with real closures, by all means, use them! In some ways, the Command
pattern is a way of emulating closures in languages that don’t have them.

I say some ways here because building actual classes or structures for commands is still useful even in languages that have closures.
If your command has multiple operations (like undoable commands), mapping that to a single function is awkward.

Defining an actual class with fields also helps readers easily tell what data the command contains. Closures are a wonderfully terse
way of automatically wrapping up some state, but they can be so automatic that it’s hard to see what state they’re actually holding.

For example, if we were building a game in JavaScript, we could create a move unit command just
like this:

function makeMoveUnitCommand(unit, x, y) {
 // This function here is the command object:
 return function() {
 unit.moveTo(x, y);
 }
}

We could add support for undo as well using a pair of closures:

function makeMoveUnitCommand(unit, x, y) {
 var xBefore, yBefore;
 return {
 execute: function() {
 xBefore = unit.x();
 yBefore = unit.y();
 unit.moveTo(x, y);
 },
 undo: function() {
 unit.moveTo(xBefore, yBefore);
 }
 };
}

If you’re comfortable with a functional style, this way of doing things is natural. If you aren’t, I hope
this chapter helped you along the way a bit. For me, the usefulness of the Command pattern really
shows how effective the functional paradigm is for many problems.

See Also
You may end up with a lot of different command classes. In order to make it easier to implement
those, it’s often helpful to define a concrete base class with a bunch of convenient high-level
methods that the derived commands can compose to define their behavior. That turns the
command’s main execute() method into the Subclass Sandbox pattern.

In our examples, we explicitly chose which actor would handle a command. In some cases,
especially where your object model is hierarchical, it may not be so cut-and-dried. An object
may respond to a command, or it may decide to pawn it off on some subordinate object. If you
do that, you’ve got yourself the Chain of Responsibility pattern.

Some commands are stateless chunks of pure behavior like the JumpCommand in the first
example. In cases like that, having more than one instance of that class wastes memory since all
instances are equivalent. The Flyweight pattern addresses that.

You could make it a singleton too, but friends don’t let friends create singletons.

kindle:pos:fid:0015:off:0000000000

Flyweight
The fog lifts, revealing a majestic old growth forest. Ancient hemlocks, countless in number, tower
over you forming a cathedral of greenery. The stained glass canopy of leaves fragments the sunlight
into golden shafts of mist. Between giant trunks, you can make out the massive forest receding into the
distance.

This is the kind of otherworldly setting we dream of as game developers, and scenes like these are
often enabled by a pattern whose name couldn’t possibly be more modest: the humble Flyweight.

Forest for the Trees
I can describe a sprawling woodland with just a few sentences, but actually implementing it in a
realtime game is another story. When you’ve got an entire forest of individual trees filling the screen,
all that a graphics programmer sees is the millions of polygons they’ll have to somehow shovel onto
the GPU every sixtieth of a second.

We’re talking thousands of trees, each with detailed geometry containing thousands of polygons. Even
if you have enough memory to describe that forest, in order to render it, that data has to make its way
over the bus from the CPU to the GPU.

Each tree has a bunch of bits associated with it:

A mesh of polygons that define the shape of the trunk, branches, and greenery.
Textures for the bark and leaves.
Its location and orientation in the forest.
Tuning parameters like size and tint so that each tree looks different.

If you were to sketch it out in code, you’d have something like this:

class Tree
{
private:
 Mesh mesh_;
 Texture bark_;
 Texture leaves_;
 Vector position_;
 double height_;
 double thickness_;
 Color barkTint_;
 Color leafTint_;
};

That’s a lot of data, and the mesh and textures are particularly large. An entire forest of these objects
is too much to throw at the GPU in one frame. Fortunately, there’s a time-honored trick to handling
this.

The key observation is that even though there may be thousands of trees in the forest, they mostly look
similar. They will likely all use the same mesh and textures. That means most of the fields in these
objects are the same between all of those instances.

You’d have to be crazy or a billionaire to budget for the artists to individually model each tree in an entire forest.

Note that the stuff in the small boxes is the same for each tree.

We can model that explicitly by splitting the object in half. First, we pull out the data that all trees
have in common and move it into a separate class:

class TreeModel
{
private:
 Mesh mesh_;
 Texture bark_;
 Texture leaves_;
};

The game only needs a single one of these, since there’s no reason to have the same meshes and
textures in memory a thousand times. Then, each instance of a tree in the world has a reference to that
shared TreeModel. What remains in Tree is the state that is instance-specific:

class Tree
{
private:
 TreeModel* model_;

 Vector position_;
 double height_;
 double thickness_;
 Color barkTint_;
 Color leafTint_;
};

You can visualize it like this:

This looks a lot like the Type Object pattern. Both involve delegating part of an object’s state to some other object shared between a
number of instances. However, the intent behind the patterns differs.

With a type object, the goal is to minimize the number of classes you have to define by lifting “types” into your own object model. Any
memory sharing you get from that is a bonus. The Flyweight pattern is purely about efficiency.

This is all well and good for storing stuff in main memory, but that doesn’t help rendering. Before the
forest gets on screen, it has to work its way over to the GPU. We need to express this resource
sharing in a way that the graphics card understands.

A Thousand Instances
To minimize the amount of data we have to push to the GPU, we want to be able to send the shared
data — the TreeModel — just once. Then, separately, we push over every tree instance’s unique
data — its position, color, and scale. Finally, we tell the GPU, “Use that one model to render each of
these instances.”

Fortunately, today’s graphics APIs and cards support exactly that. The details are fiddly and out of the
scope of this book, but both Direct3D and OpenGL can do something called instanced rendering.

In both APIs, you provide two streams of data. The first is the blob of common data that will be
rendered multiple times — the mesh and textures in our arboreal example. The second is the list of
instances and their parameters that will be used to vary that first chunk of data each time it’s drawn.
With a single draw call, an entire forest grows.

The fact that this API is implemented directly by the graphics card means the Flyweight pattern may be the only Gang of Four design
pattern to have actual hardware support.

http://en.wikipedia.org/wiki/Geometry_instancing

The Flyweight Pattern
Now that we’ve got one concrete example under our belts, I can walk you through the general pattern.
Flyweight, like its name implies, comes into play when you have objects that need to be more
lightweight, generally because you have too many of them.

With instanced rendering, it’s not so much that they take up too much memory as it is they take too
much time to push each separate tree over the bus to the GPU, but the basic idea is the same.

The pattern solves that by separating out an object’s data into two kinds. The first kind of data is the
stuff that’s not specific to a single instance of that object and can be shared across all of them. The
Gang of Four calls this the intrinsic state, but I like to think of it as the “context-free” stuff. In the
example here, this is the geometry and textures for the tree.

The rest of the data is the extrinsic state, the stuff that is unique to that instance. In this case, that is
each tree’s position, scale, and color. Just like in the chunk of sample code up there, this pattern saves
memory by sharing one copy of the intrinsic state across every place where an object appears.

From what we’ve seen so far, this seems like basic resource sharing, hardly worth being called a
pattern. That’s partially because in this example here, we could come up with a clear separate
identity for the shared state: the TreeModel.

I find this pattern to be less obvious (and thus more clever) when used in cases where there isn’t a
really well-defined identity for the shared object. In those cases, it feels more like an object is
magically in multiple places at the same time. Let me show you another example.

A Place To Put Down Roots
The ground these trees are growing on needs to be represented in our game too. There can be patches
of grass, dirt, hills, lakes, rivers, and whatever other terrain you can dream up. We’ll make the ground
tile-based: the surface of the world is a huge grid of tiny tiles. Each tile is covered in one kind of
terrain.

Each terrain type has a number of properties that affect gameplay:

A movement cost that determines how quickly players can move through it.
A flag for whether it’s a watery terrain that can be crossed by boats.
A texture used to render it.

Because we game programmers are paranoid about efficiency, there’s no way we’d store all of that
state in each tile in the world. Instead, a common approach is to use an enum for terrain types:

After all, we already learned our lesson with those trees.

enum Terrain
{
 TERRAIN_GRASS,
 TERRAIN_HILL,
 TERRAIN_RIVER
 // Other terrains...
};

Then the world maintains a huge grid of those:

class World
{
private:
 Terrain tiles_[WIDTH][HEIGHT];
};

Here I’m using a nested array to store the 2D grid. That’s efficient in C/C++ because it will pack all of the elements together. In Java
or other memory- managed languages, doing that will actually give you an array of rows where each element is a reference to the
array of columns, which may not be as memory- friendly as you’d like.

In either case, real code would be better served by hiding this implementation detail behind a nice 2D grid data structure. I’m doing
this here just to keep it simple.

To actually get the useful data about a tile, we do something like:

int World::getMovementCost(int x, int y)
{
 switch (tiles_[x][y])
 {
 case TERRAIN_GRASS: return 1;
 case TERRAIN_HILL: return 3;
 case TERRAIN_RIVER: return 2;
 // Other terrains...
 }
}

bool World::isWater(int x, int y)
{

 switch (tiles_[x][y])
 {
 case TERRAIN_GRASS: return false;
 case TERRAIN_HILL: return false;
 case TERRAIN_RIVER: return true;
 // Other terrains...
 }
}

You get the idea. This works, but I find it ugly. I think of movement cost and wetness as data about a
terrain, but here that’s embedded in code. Worse, the data for a single terrain type is smeared across
a bunch of methods. It would be really nice to keep all of that encapsulated together. After all, that’s
what objects are designed for.

It would be great if we could have an actual terrain class, like:

class Terrain
{
public:
 Terrain(int movementCost,
 bool isWater,
 Texture texture)
 : movementCost_(movementCost),
 isWater_(isWater),
 texture_(texture)
 {}

 int getMovementCost() const { return movementCost_; }
 bool isWater() const { return isWater_; }
 const Texture& getTexture() const { return texture_; }

private:
 int movementCost_;
 bool isWater_;
 Texture texture_;
};

You’ll notice that all of the methods here are const. That’s no coincidence. Since the same object is used in multiple contexts, if you
were to modify it, the changes would appear in multiple places simultaneously.

That’s probably not what you want. Sharing objects to save memory should be an optimization that doesn’t affect the visible behavior
of the app. Because of this, Flyweight objects are almost always immutable.

But we don’t want to pay the cost of having an instance of that for each tile in the world. If you look at
that class, you’ll notice that there’s actually nothing in there that’s specific to where that tile is. In
flyweight terms, all of a terrain’s state is “intrinsic” or “context-free”.

Given that, there’s no reason to have more than one of each terrain type. Every grass tile on the
ground is identical to every other one. Instead of having the world be a grid of enums or Terrain
objects, it will be a grid of pointers to Terrain objects:

class World
{
private:
 Terrain* tiles_[WIDTH][HEIGHT];

 // Other stuff...
};

Each tile that uses the same terrain will point to the same terrain instance.

Since the terrain instances are used in multiple places, their lifetimes would be a little more complex
to manage if you were to dynamically allocate them. Instead, we’ll just store them directly in the
world:

class World
{
public:
 World()
 : grassTerrain_(1, false, GRASS_TEXTURE),
 hillTerrain_(3, false, HILL_TEXTURE),
 riverTerrain_(2, true, RIVER_TEXTURE)
 {}

private:
 Terrain grassTerrain_;
 Terrain hillTerrain_;
 Terrain riverTerrain_;

 // Other stuff...
};

Then we can use those to paint the ground like this:

void World::generateTerrain()
{
 // Fill the ground with grass.
 for (int x = 0; x < WIDTH; x++)
 {
 for (int y = 0; y < HEIGHT; y++)
 {
 // Sprinkle some hills.
 if (random(10) == 0)
 {
 tiles_[x][y] = &hillTerrain_;
 }
 else
 {
 tiles_[x][y] = &grassTerrain_;
 }
 }
 }

 // Lay a river.
 int x = random(WIDTH);

 for (int y = 0; y < HEIGHT; y++) {
 tiles_[x][y] = &riverTerrain_;
 }
}

I’ll admit this isn’t the world’s greatest procedural terrain generation algorithm.

Now instead of methods on World for accessing the terrain properties, we can expose the Terrain
object directly:

const Terrain& World::getTile(int x, int y) const
{
 return *tiles_[x][y];
}

This way, World is no longer coupled to all sorts of details of terrains. If you want some property of
the tile, you can get it right from that object:

int cost = world.getTile(2, 3).getMovementCost();

We’re back to the pleasant API of working with real objects, and we did this with almost no
overhead — a pointer is often no larger than an enum.

What About Performance?
I say “almost” here because the performance bean counters will rightfully want to know how this
compares to using an enum. Referencing the terrain by pointer implies an indirect lookup. To get to
some terrain data like the movement cost, you first have to follow the pointer in the grid to find the
terrain object and then find the movement cost there. Chasing a pointer like this can cause a cache
miss, which can slow things down.

For lots more on pointer chasing and cache misses, see the chapter on Data Locality.

As always, the golden rule of optimization is profile first. Modern computer hardware is too complex
for performance to be a game of pure reason anymore. In my tests for this chapter, there was no
penalty for using a flyweight over an enum. Flyweights were actually noticeably faster. But that’s
entirely dependent on how other stuff is laid out in memory.

What I am confident of is that using flyweight objects shouldn’t be dismissed out of hand. They give
you the advantages of an object-oriented style without the expense of tons of objects. If you find
yourself creating an enum and doing lots of switches on it, consider this pattern instead. If you’re
worried about performance, at least profile first before changing your code to a less maintainable
style.

See Also
In the tile example, we just eagerly created an instance for each terrain type and stored it in
World. That made it easy to find and reuse the shared instances. In many cases, though, you
won’t want to create all of the flyweights up front.

If you can’t predict which ones you actually need, it’s better to create them on demand. To get
the advantage of sharing, when you request one, you first see if you’ve already created an
identical one. If so, you just return that instance.

This usually means that you have to encapsulate construction behind some interface that can first
look for an existing object. Hiding a constructor like this is an example of the Factory Method
pattern.

In order to return a previously created flyweight, you’ll have to keep track of the pool of ones
that you’ve already instantiated. As the name implies, that means that an object pool might be a
helpful place to store them.

When you’re using the State pattern, you often have “state” objects that don’t have any fields
specific to the machine that the state is being used in. The state’s identity and methods are
enough to be useful. In that case, you can apply this pattern and reuse that same state instance in
multiple state machines at the same time without any problems.

http://en.wikipedia.org/wiki/Factory_method_pattern

Observer
You can’t throw a rock at a computer without hitting an application built using the Model-View-
Controller architecture, and underlying that is the Observer pattern. Observer is so pervasive that
Java put it in its core library (java.util.Observer) and C# baked it right into the language (the
event keyword).

Like so many things in software, MVC was invented by Smalltalkers in the seventies. Lispers probably claim they came up with it in
the sixties but didn’t bother writing it down.

Observer is one of the most widely used and widely known of the original Gang of Four patterns, but
the game development world can be strangely cloistered at times, so maybe this is all news to you. In
case you haven’t left the abbey in a while, let me walk you through a motivating example.

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://docs.oracle.com/javase/7/docs/api/java/util/Observer.html
http://msdn.microsoft.com/en-us/library/8627sbea.aspx

Achievement Unlocked
Say we’re adding an achievements system to our game. It will feature dozens of different badges
players can earn for completing specific milestones like “Kill 100 Monkey Demons”, “Fall off a
Bridge”, or “Complete a Level Wielding Only a Dead Weasel”.

I swear I had no double meaning in mind when I drew this.

This is tricky to implement cleanly since we have such a wide range of achievements that are
unlocked by all sorts of different behaviors. If we aren’t careful, tendrils of our achievement system
will twine their way through every dark corner of our codebase. Sure, “Fall off a Bridge” is
somehow tied to the physics engine, but do we really want to see a call to unlockFallOffBridge()
right in the middle of the linear algebra in our collision resolution algorithm?

This is a rhetorical question. No self-respecting physics programmer would ever let us sully their beautiful mathematics with something
as pedestrian as gameplay.

What we’d like, as always, is to have all the code concerned with one facet of the game nicely
lumped in one place. The challenge is that achievements are triggered by a bunch of different aspects
of gameplay. How can that work without coupling the achievement code to all of them?

That’s what the observer pattern is for. It lets one piece of code announce that something interesting
happened without actually caring who receives the notification.

For example, we’ve got some physics code that handles gravity and tracks which bodies are relaxing
on nice flat surfaces and which are plummeting toward sure demise. To implement the “Fall off a
Bridge” badge, we could just jam the achievement code right in there, but that’s a mess. Instead, we
can just do:

void Physics::updateEntity(Entity& entity)
{
 bool wasOnSurface = entity.isOnSurface();
 entity.accelerate(GRAVITY);
 entity.update();
 if (wasOnSurface && !entity.isOnSurface())
 {
 notify(entity, EVENT_START_FALL);
 }
}

All it does is say, “Uh, I don’t know if anyone cares, but this thing just fell. Do with that as you will.”

The physics engine does have to decide what notifications to send, so it isn’t entirely decoupled. But in architecture, we’re most often
trying to make systems better, not perfect.

The achievement system registers itself so that whenever the physics code sends a notification, the
achievement system receives it. It can then check to see if the falling body is our less-than-graceful
hero, and if his perch prior to this new, unpleasant encounter with classical mechanics was a bridge.
If so, it unlocks the proper achievement with associated fireworks and fanfare, and it does all of this
with no involvement from the physics code.

In fact, we can change the set of achievements or tear out the entire achievement system without
touching a line of the physics engine. It will still send out its notifications, oblivious to the fact that
nothing is receiving them anymore.

Of course, if we permanently remove achievements and nothing else ever listens to the physics engine’s notifications, we may as well
remove the notification code too. But during the game’s evolution, it’s nice to have this flexibility.

How it Works
If you don’t already know how to implement the pattern, you could probably guess from the previous
description, but to keep things easy on you, I’ll walk through it quickly.

The observer

We’ll start with the nosy class that wants to know when another object does something interesting.
These inquisitive objects are defined by this interface:

class Observer
{
public:
 virtual ~Observer() {}
 virtual void onNotify(const Entity& entity, Event event) = 0;
};

The parameters to onNotify() are up to you. That’s why this is the Observer pattern and not the Observer “ready-made code you
can paste into your game”. Typical parameters are the object that sent the notification and a generic “data” parameter you stuff other
details into.

If you’re coding in a language with generics or templates, you’ll probably use them here, but it’s also fine to tailor them to your
specific use case. Here, I’m just hardcoding it to take a game entity and an enum that describes what happened.

Any concrete class that implements this becomes an observer. In our example, that’s the achievement
system, so we’d have something like so:

class Achievements : public Observer
{
public:
 virtual void onNotify(const Entity& entity, Event event)
 {
 switch (event)
 {
 case EVENT_ENTITY_FELL:
 if (entity.isHero() && heroIsOnBridge_)
 {
 unlock(ACHIEVEMENT_FELL_OFF_BRIDGE);
 }
 break;

 // Handle other events, and update heroIsOnBridge_...
 }
 }

private:
 void unlock(Achievement achievement)
 {
 // Unlock if not already unlocked...
 }

 bool heroIsOnBridge_;
};

The subject

The notification method is invoked by the object being observed. In Gang of Four parlance, that
object is called the “subject”. It has two jobs. First, it holds the list of observers that are waiting oh-
so-patiently for a missive from it:

class Subject
{
private:
 Observer* observers_[MAX_OBSERVERS];
 int numObservers_;
};

In real code, you would use a dynamically-sized collection instead of a dumb array. I’m sticking with the basics here for people
coming from other languages who don’t know C++’s standard library.

The important bit is that the subject exposes a public API for modifying that list:

class Subject
{
public:
 void addObserver(Observer* observer)
 {
 // Add to array...
 }

 void removeObserver(Observer* observer)
 {
 // Remove from array...
 }

 // Other stuff...
};

That allows outside code to control who receives notifications. The subject communicates with the
observers, but it isn’t coupled to them. In our example, no line of physics code will mention
achievements. Yet, it can still talk to the achievements system. That’s the clever part about this
pattern.

It’s also important that the subject has a list of observers instead of a single one. It makes sure that
observers aren’t implicitly coupled to each other. For example, say the audio engine also observes
the fall event so that it can play an appropriate sound. If the subject only supported one observer,
when the audio engine registered itself, that would un-register the achievements system.

That means those two systems would interfere with each other — and in a particularly nasty way,
since the second would disable the first. Supporting a list of observers ensures that each observer is
treated independently from the others. As far as they know, each is the only thing in the world with
eyes on the subject.

The other job of the subject is sending notifications:

class Subject
{
protected:
 void notify(const Entity& entity, Event event)
 {
 for (int i = 0; i < numObservers_; i++)
 {
 observers_[i]->onNotify(entity, event);

 }
 }

 // Other stuff...
};

Note that this code assumes observers don’t modify the list in their onNotify() methods. A more robust implementation would either
prevent or gracefully handle concurrent modification like that.

Observable physics

Now, we just need to hook all of this into the physics engine so that it can send notifications and the
achievement system can wire itself up to receive them. We’ll stay close to the original Design
Patterns recipe and inherit Subject:

class Physics : public Subject
{
public:
 void updateEntity(Entity& entity);
};

This lets us make notify() in Subject protected. That way the derived physics engine class can
call it to send notifications, but code outside of it cannot. Meanwhile, addObserver() and
removeObserver() are public, so anything that can get to the physics system can observe it.

In real code, I would avoid using inheritance here. Instead, I’d make Physics have an instance of Subject. Instead of observing the
physics engine itself, the subject would be a separate “falling event” object. Observers could register themselves using something like:

physics.entityFell()
 .addObserver(this);

To me, this is the difference between “observer” systems and “event” systems. With the former, you observe the thing that did
something interesting. With the latter, you observe an object that represents the interesting thing that happened.

Now, when the physics engine does something noteworthy, it calls notify() like in the motivating
example before. That walks the observer list and gives them all the heads up.

Pretty simple, right? Just one class that maintains a list of pointers to instances of some interface. It’s
hard to believe that something so straightforward is the communication backbone of countless
programs and app frameworks.

But the Observer pattern isn’t without its detractors. When I’ve asked other game programmers what
they think about this pattern, they bring up a few complaints. Let’s see what we can do to address
them, if anything.

“It’s Too Slow”
I hear this a lot, often from programmers who don’t actually know the details of the pattern. They have
a default assumption that anything that smells like a “design pattern” must involve piles of classes and
indirection and other creative ways of squandering CPU cycles.

The Observer pattern gets a particularly bad rap here because it’s been known to hang around with
some shady characters named “events”, “messages”, and even “data binding”. Some of those systems
can be slow (often deliberately, and for good reason). They involve things like queuing or doing
dynamic allocation for each notification.

This is why I think documenting patterns is important. When we get fuzzy about terminology, we lose the ability to communicate
clearly and succinctly. You say, “Observer”, and someone hears “Events” or “Messaging” because either no one bothered to write
down the difference or they didn’t happen to read it.

That’s what I’m trying to do with this book. To cover my bases, I’ve got a chapter on events and messages too: Event Queue.

But, now that you’ve seen how the pattern is actually implemented, you know that isn’t the case.
Sending a notification is simply walking a list and calling some virtual methods. Granted, it’s a bit
slower than a statically dispatched call, but that cost is negligible in all but the most performance-
critical code.

I find this pattern fits best outside of hot code paths anyway, so you can usually afford the dynamic
dispatch. Aside from that, there’s virtually no overhead. We aren’t allocating objects for messages.
There’s no queueing. It’s just an indirection over a synchronous method call.

It’s too fast?

In fact, you have to be careful because the Observer pattern is synchronous. The subject invokes its
observers directly, which means it doesn’t resume its own work until all of the observers have
returned from their notification methods. A slow observer can block a subject.

This sounds scary, but in practice, it’s not the end of the world. It’s just something you have to be
aware of. UI programmers — who’ve been doing event-based programming like this for ages —
have a time-worn motto for this: “stay off the UI thread”.

If you’re responding to an event synchronously, you need to finish and return control as quickly as
possible so that the UI doesn’t lock up. When you have slow work to do, push it onto another thread
or a work queue.

You do have to be careful mixing observers with threading and explicit locks, though. If an observer
tries to grab a lock that the subject has, you can deadlock the game. In a highly threaded engine, you
may be better off with asynchronous communication using an Event Queue.

“It Does Too Much Dynamic Allocation”
Whole tribes of the programmer clan — including many game developers — have moved onto
garbage collected languages, and dynamic allocation isn’t the boogie man that it used to be. But for
performance-critical software like games, memory allocation still matters, even in managed
languages. Dynamic allocation takes time, as does reclaiming memory, even if it happens
automatically.

Many game developers are less worried about allocation and more worried about fragmentation. When your game needs to run
continuously for days without crashing in order to get certified, an increasingly fragmented heap can prevent you from shipping.

The Object Pool chapter goes into more detail about this and a common technique for avoiding it.

In the example code before, I used a fixed array because I’m trying to keep things dead simple. In real
implementations, the observer list is almost always a dynamically allocated collection that grows and
shrinks as observers are added and removed. That memory churn spooks some people.

Of course, the first thing to notice is that it only allocates memory when observers are being wired up.
Sending a notification requires no memory allocation whatsoever — it’s just a method call. If you
hook up your observers at the start of the game and don’t mess with them much, the amount of
allocation is minimal.

If it’s still a problem, though, I’ll walk through a way to implement adding and removing observers
without any dynamic allocation at all.

Linked observers

In the code we’ve seen so far, Subject owns a list of pointers to each Observer watching it. The
Observer class itself has no reference to this list. It’s just a pure virtual interface. Interfaces are
preferred over concrete, stateful classes, so that’s generally a good thing.

But if we are willing to put a bit of state in Observer, we can solve our allocation problem by
threading the subject’s list through the observers themselves. Instead of the subject having a separate
collection of pointers, the observer objects become nodes in a linked list:

To implement this, first we’ll get rid of the array in Subject and replace it with a pointer to the head
of the list of observers:

class Subject
{
 Subject()
 : head_(NULL)
 {}

 // Methods...
private:
 Observer* head_;
};

Then we’ll extend Observer with a pointer to the next observer in the list:

class Observer
{
 friend class Subject;

public:
 Observer()
 : next_(NULL)
 {}

 // Other stuff...
private:
 Observer* next_;
};

We’re also making Subject a friend class here. The subject owns the API for adding and removing
observers, but the list it will be managing is now inside the Observer class itself. The simplest way
to give it the ability to poke at that list is by making it a friend.

Registering a new observer is just wiring it into the list. We’ll take the easy option and insert it at the
front:

void Subject::addObserver(Observer* observer)
{
 observer->next_ = head_;
 head_ = observer;
}

The other option is to add it to the end of the linked list. Doing that adds a bit more complexity.
Subject has to either walk the list to find the end or keep a separate tail_ pointer that always points
to the last node.

Adding it to the front of the list is simpler, but does have one side effect. When we walk the list to
send a notification to every observer, the most recently registered observer gets notified first. So if
you register observers A, B, and C, in that order, they will receive notifications in C, B, A order.

In theory, this doesn’t matter one way or the other. It’s a tenet of good observer discipline that two
observers observing the same subject should have no ordering dependencies relative to each other. If
the ordering does matter, it means those two observers have some subtle coupling that could end up
biting you.

Let’s get removal working:

void Subject::removeObserver(Observer* observer)
{
 if (head_ == observer)
 {
 head_ = observer->next_;
 observer->next_ = NULL;
 return;
 }

 Observer* current = head_;
 while (current != NULL)
 {
 if (current->next_ == observer)
 {
 current->next_ = observer->next_;
 observer->next_ = NULL;
 return;
 }

 current = current->next_;
 }
}

Removing a node from a linked list usually requires a bit of ugly special case handling for removing the very first node, like you see
here. There’s a more elegant solution using a pointer to a pointer.

I didn’t do that here because it confuses at least half the people I show it to. It’s a worthwhile exercise for you to do, though: It helps
you really think in terms of pointers.

Because we have a singly linked list, we have to walk it to find the observer we’re removing. We’d
have to do the same thing if we were using a regular array for that matter. If we use a doubly linked
list, where each observer has a pointer to both the observer after it and before it, we can remove an
observer in constant time. If this were real code, I’d do that.

The only thing left to do is send a notification. That’s as simple as walking the list:

void Subject::notify(const Entity& entity, Event event)
{
 Observer* observer = head_;
 while (observer != NULL)
 {
 observer->onNotify(entity, event);
 observer = observer->next_;
 }
}

Here, we walk the entire list and notify every single observer in it. This ensures that all of the observers get equal priority and are
independent of each other.

We could tweak this such that when an observer is notified, it can return a flag indicating whether the subject should keep walking the
list or stop. If you do that, you’re pretty close to having the Chain of Responsibility pattern.

Not too bad, right? A subject can have as many observers as it wants, without a single whiff of
dynamic memory. Registering and unregistering is as fast as it was with a simple array. We have
sacrificed one small feature, though.

Since we are using the observer object itself as a list node, that implies it can only be part of one
subject’s observer list. In other words, an observer can only observe a single subject at a time. In a

http://en.wikipedia.org/wiki /Chain-of-responsibility_pattern

more traditional implementation where each subject has its own independent list, an observer can be
in more than one of them simultaneously.

You may be able to live with that limitation. I find it more common for a subject to have multiple
observers than vice versa. If it is a problem for you, there is another more complex solution you can
use that still doesn’t require dynamic allocation. It’s too long to cram into this chapter, but I’ll sketch
it out and let you fill in the blanks…

A pool of list nodes

Like before, each subject will have a linked list of observers. However, those list nodes won’t be the
observer objects themselves. Instead, they’ll be separate little “list node” objects that contain a
pointer to the observer and then a pointer to the next node in the list.

Since multiple nodes can all point to the same observer, that means an observer can be in more than
one subject’s list at the same time. We’re back to being able to observe multiple subjects
simultaneously.

Linked lists come in two flavors. In the one you learned in school, you have a node object that contains the data. In our previous linked
observer example, that was flipped around: the data (in this case the observer) contained the node (i.e. the next_ pointer).

The latter style is called an “intrusive” linked list because using an object in a list intrudes into the definition of that object itself. That
makes intrusive lists less flexible but, as we’ve seen, also more efficient. They’re popular in places like the Linux kernel where that
trade-off makes sense.

The way you avoid dynamic allocation is simple: since all of those nodes are the same size and type,
you pre-allocate an object pool of them. That gives you a fixed-size pile of list nodes to work with,
and you can use and reuse them as you need without having to hit an actual memory allocator.

Remaining Problems
I think we’ve banished the three boogie men used to scare people off this pattern. As we’ve seen, it’s
simple, fast, and can be made to play nice with memory management. But does that mean you should
use observers all the time?

Now, that’s a different question. Like all design patterns, the Observer pattern isn’t a cure-all. Even
when implemented correctly and efficiently, it may not be the right solution. The reason design
patterns get a bad rap is because people apply good patterns to the wrong problem and end up making
things worse.

Two challenges remain, one technical and one at something more like the maintainability level. We’ll
do the technical one first because those are always easiest.

Destroying subjects and observers

The sample code we walked through is solid, but it side-steps an important issue: what happens when
you delete a subject or an observer? If you carelessly call delete on some observer, a subject may
still have a pointer to it. That’s now a dangling pointer into deallocated memory. When that subject
tries to send a notification, well… let’s just say you’re not going to have a good time.

Not to point fingers, but I’ll note that Design Patterns doesn’t mention this issue at all.

Destroying the subject is easier since in most implementations, the observer doesn’t have any
references to it. But even then, sending the subject’s bits to the memory manager’s recycle bin may
cause some problems. Those observers may still be expecting to receive notifications in the future,
and they don’t know that that will never happen now. They aren’t observers at all, really, they just
think they are.

You can deal with this in a couple of different ways. The simplest is to do what I did and just punt on
it. It’s an observer’s job to unregister itself from any subjects when it gets deleted. More often than
not, the observer does know which subjects it’s observing, so it’s usually just a matter of adding a
removeObserver() call to its destructor.

As is often the case, the hard part isn’t doing it, it’s remembering to do it.

If you don’t want to leave observers hanging when a subject gives up the ghost, that’s easy to fix. Just
have the subject send one final “dying breath” notification right before it gets destroyed. That way,
any observer can receive that and take whatever action it thinks is appropriate.

Mourn, send flowers, compose elegy, etc.

People — even those of us who’ve spent enough time in the company of machines to have some of
their precise nature rub off on us — are reliably terrible at being reliable. That’s why we invented
computers: they don’t make the mistakes we so often do.

A safer answer is to make observers automatically unregister themselves from every subject when
they get destroyed. If you implement the logic for that once in your base observer class, everyone
using it doesn’t have to remember to do it themselves. This does add some complexity, though. It
means each observer will need a list of the subjects it’s observing. You end up with pointers going in
both directions.

Don’t worry, I’ve got a GC

All you cool kids with your hip modern languages with garbage collectors are feeling pretty smug
right now. Think you don’t have to worry about this because you never explicitly delete anything?
Think again!

Imagine this: you’ve got some UI screen that shows a bunch of stats about the player’s character like
their health and stuff. When the player brings up the screen, you instantiate a new object for it. When
they close it, you just forget about the object and let the GC clean it up.

Every time the character takes a punch to the face (or elsewhere, I suppose), it sends a notification.
The UI screen observes that and updates the little health bar. Great. Now what happens when the
player dismisses the screen, but you don’t unregister the observer?

The UI isn’t visible anymore, but it won’t get garbage collected since the character’s observer list
still has a reference to it. Every time the screen is loaded, we add a new instance of it to that
increasingly long list.

The entire time the player is playing the game, running around, and getting in fights, the character is
sending notifications that get received by all of those screens. They aren’t on screen, but they receive
notifications and waste CPU cycles updating invisible UI elements. If they do other things like play
sounds, you’ll get noticeably wrong behavior.

This is such a common issue in notification systems that it has a name: the lapsed listener problem.
Since subjects retain references to their listeners, you can end up with zombie UI objects lingering in
memory. The lesson here is to be disciplined about unregistration.

An even surer sign of its significance: it has a Wikipedia article.

What’s going on?

The other, deeper issue with the Observer pattern is a direct consequence of its intended purpose. We
use it because it helps us loosen the coupling between two pieces of code. It lets a subject indirectly
communicate with some observer without being statically bound to it.

This is a real win when you’re trying to reason about the subject’s behavior, and any hangers-on
would be an annoying distraction. If you’re poking at the physics engine, you really don’t want your
editor — or your mind — cluttered up with a bunch of stuff about achievements.

http://en.wikipedia.org/wiki/Lapsed_listener_problem

On the other hand, if your program isn’t working and the bug spans some chain of observers,
reasoning about that communication flow is much more difficult. With an explicit coupling, it’s as
easy as looking up the method being called. This is child’s play for your average IDE since the
coupling is static.

But if that coupling happens through an observer list, the only way to tell who will get notified is by
seeing which observers happen to be in that list at runtime. Instead of being able to statically reason
about the communication structure of the program, you have to reason about its imperative, dynamic
behavior.

My guideline for how to cope with this is pretty simple. If you often need to think about both sides of
some communication in order to understand a part of the program, don’t use the Observer pattern to
express that linkage. Prefer something more explicit.

When you’re hacking on some big program, you tend to have lumps of it that you work on all together.
We have lots of terminology for this like “separation of concerns” and “coherence and cohesion” and
“modularity”, but it boils down to “this stuff goes together and doesn’t go with this other stuff”.

The observer pattern is a great way to let those mostly unrelated lumps talk to each other without them
merging into one big lump. It’s less useful within a single lump of code dedicated to one feature or
aspect.

That’s why it fits our example well: achievements and physics are almost entirely unrelated domains,
likely implemented by different people. We want the bare minimum of communication between them
so that working on either one doesn’t require much knowledge of the other.

Observers Today
Design Patterns came out in 1994. Back then, object-oriented programming was the hot paradigm.
Every programmer on Earth wanted to “Learn OOP in 30 Days,” and middle managers paid them
based on the number of classes they created. Engineers judged their mettle by the depth of their
inheritance hierarchies.

That same year, Ace of Base had not one but three hit singles, so that may tell you something about our taste and discernment back
then.

The Observer pattern got popular during that zeitgeist, so it’s no surprise that it’s class-heavy. But
mainstream coders now are more comfortable with functional programming. Having to implement an
entire interface just to receive a notification doesn’t fit today’s aesthetic.

It feels heavyweight and rigid. It is heavyweight and rigid. For example, you can’t have a single class
that uses different notification methods for different subjects.

This is why the subject usually passes itself to the observer. Since an observer only has a single onNotify() method, if it’s observing
multiple subjects, it needs to be able to tell which one called it.

A more modern approach is for an “observer” to be only a reference to a method or function. In
languages with first-class functions, and especially ones with closures, this is a much more common
way to do observers.

These days, practically every language has closures. C++ overcame the challenge of closures in a language without garbage
collection, and even Java finally got its act together and introduced them in JDK 8.

For example, C# has “events” baked into the language. With those, the observer you register is a
“delegate”, which is that language’s term for a reference to a method. In JavaScript’s event system,
observers can be objects supporting a special EventListener protocol, but they can also just be
functions. The latter is almost always what people use.

If I were designing an observer system today, I’d make it function-based instead of class-based. Even
in C++, I would tend toward a system that let you register member function pointers as observers
instead of instances of some Observer interface.

Here’s an interesting blog post on one way to implement this in C++.

http://molecularmusings.wordpress.com/2011/09/19/generic-type-safe-delegates-and-events-in-c/

Observers Tomorrow
Event systems and other observer-like patterns are incredibly common these days. They’re a well-
worn path. But if you write a few large apps using them, you start to notice something. A lot of the
code in your observers ends up looking the same. It’s usually something like:

1. Get notified that some state has changed.

2. Imperatively modify some chunk of UI to reflect the new state.

It’s all, “Oh, the hero health is 7 now? Let me set the width of the health bar to 70 pixels.” After a
while, that gets pretty tedious. Computer science academics and software engineers have been trying
to eliminate that tedium for a long time. Their attempts have gone under a number of different names:
“dataflow programming”, “functional reactive programming”, etc.

While there have been some successes, usually in limited domains like audio processing or chip
design, the Holy Grail still hasn’t been found. In the meantime, a less ambitious approach has started
gaining traction. Many recent application frameworks now use “data binding”.

Unlike more radical models, data binding doesn’t try to entirely eliminate imperative code and
doesn’t try to architect your entire application around a giant declarative dataflow graph. What it
does do is automate the busywork where you’re tweaking a UI element or calculated property to
reflect a change to some value.

Like other declarative systems, data binding is probably a bit too slow and complex to fit inside the
core of a game engine. But I would be surprised if I didn’t see it start making inroads into less critical
areas of the game like UI.

In the meantime, the good old Observer pattern will still be here waiting for us. Sure, it’s not as
exciting as some hot technique that manages to cram both “functional” and “reactive” in its name, but
it’s dead simple and it works. To me, those are often the two most important criteria for a solution.

Prototype
The first time I heard the word “prototype” was in Design Patterns. Today, it seems like everyone is
saying it, but it turns out they aren’t talking about the design pattern. We’ll cover that here, but I’ll
also show you other, more interesting places where the term “prototype” and the concepts behind it
have popped up. But first, let’s revisit the original pattern.

I don’t say “original” lightly here. Design Patterns cites Ivan Sutherland’s legendary Sketchpad project in 1963 as one of the first
examples of this pattern in the wild. While everyone else was listening to Dylan and the Beatles, Sutherland was busy just, you know,
inventing the basic concepts of CAD, interactive graphics, and object-oriented programming.

Watch the demo and prepare to be blown away.

http://en.wikipedia.org/wiki/Prototype_pattern
http://en.wikipedia.org/wiki/Sketchpad
http://www.youtube.com/watch?v=USyoT_Ha_bA

The Prototype Design Pattern
Pretend we’re making a game in the style of Gauntlet. We’ve got creatures and fiends swarming
around the hero, vying for their share of his flesh. These unsavory dinner companions enter the arena
by way of “spawners”, and there is a different spawner for each kind of enemy.

For the sake of this example, let’s say we have different classes for each kind of monster in the game
— Ghost, Demon, Sorcerer, etc., like:

class Monster
{
 // Stuff...
};

class Ghost : public Monster {};
class Demon : public Monster {};
class Sorcerer : public Monster {};

A spawner constructs instances of one particular monster type. To support every monster in the game,
we could brute-force it by having a spawner class for each monster class, leading to a parallel class
hierarchy:

I had to dig up a dusty UML book to make this diagram. The
means “inherits from”.

Implementing it would look like this:

class Spawner
{
public:
 virtual ~Spawner() {}
 virtual Monster* spawnMonster() = 0;
};

class GhostSpawner : public Spawner
{
public:
 virtual Monster* spawnMonster()
 {
 return new Ghost();
 }
};

class DemonSpawner : public Spawner
{
public:
 virtual Monster* spawnMonster()
 {
 return new Demon();
 }
};

// You get the idea...

Unless you get paid by the line of code, this is obviously not a fun way to hack this together. Lots of
classes, lots of boilerplate, lots of redundancy, lots of duplication, lots of repeating myself…

The Prototype pattern offers a solution. The key idea is that an object can spawn other objects
similar to itself. If you have one ghost, you can make more ghosts from it. If you have a demon, you
can make other demons. Any monster can be treated as a prototypal monster used to generate other
versions of itself.

To implement this, we give our base class, Monster, an abstract clone() method:

class Monster
{
public:
 virtual ~Monster() {}
 virtual Monster* clone() = 0;

 // Other stuff...
};

Each monster subclass provides an implementation that returns a new object identical in class and
state to itself. For example:

class Ghost : public Monster {
public:
 Ghost(int health, int speed)
 : health_(health),
 speed_(speed)
 {}

 virtual Monster* clone()
 {
 return new Ghost(health_, speed_);

 }

private:
 int health_;
 int speed_;
};

Once all our monsters support that, we no longer need a spawner class for each monster class.
Instead, we define a single one:

class Spawner
{
public:
 Spawner(Monster* prototype)
 : prototype_(prototype)
 {}

 Monster* spawnMonster()
 {
 return prototype_->clone();
 }

private:
 Monster* prototype_;
};

It internally holds a monster, a hidden one whose sole purpose is to be used by the spawner as a
template to stamp out more monsters like it, sort of like a queen bee who never leaves the hive.

To create a ghost spawner, we create a prototypal ghost instance and then create a spawner holding
that prototype:

Monster* ghostPrototype = new Ghost(15, 3);
Spawner* ghostSpawner = new Spawner(ghostPrototype);

One neat part about this pattern is that it doesn’t just clone the class of the prototype, it clones its
state too. This means we could make a spawner for fast ghosts, weak ghosts, or slow ghosts just by
creating an appropriate prototype ghost.

I find something both elegant and yet surprising about this pattern. I can’t imagine coming up with it
myself, but I can’t imagine not knowing about it now that I do.

How well does it work?

Well, we don’t have to create a separate spawner class for each monster, so that’s good. But we do
have to implement clone() in each monster class. That’s just about as much code as the spawners.

There are also some nasty semantic ratholes when you sit down to try to write a correct clone().
Does it do a deep clone or shallow one? In other words, if a demon is holding a pitchfork, does
cloning the demon clone the pitchfork too?

Also, not only does this not look like it’s saving us much code in this contrived problem, there’s the
fact that it’s a contrived problem. We had to take as a given that we have separate classes for each
monster. These days, that’s definitely not the way most game engines roll.

Most of us learned the hard way that big class hierarchies like this are a pain to manage, which is
why we instead use patterns like Component and Type Object to model different kinds of entities
without enshrining each in its own class.

Spawn functions

Even if we do have different classes for each monster, there are other ways to decorticate this Felis
catus. Instead of making separate spawner classes for each monster, we could make spawn functions,
like so:

Monster* spawnGhost()
{
 return new Ghost();
}

This is less boilerplate than rolling a whole class for constructing a monster of some type. Then the
one spawner class can simply store a function pointer:

typedef Monster* (*SpawnCallback)();

class Spawner
{
public:
 Spawner(SpawnCallback spawn)
 : spawn_(spawn)
 {}

 Monster* spawnMonster()
 {
 return spawn_();
 }

private:
 SpawnCallback spawn_;
};

To create a spawner for ghosts, you do:

Spawner* ghostSpawner = new Spawner(spawnGhost);

Templates

By now, most C++ developers are familiar with templates. Our spawner class needs to construct
instances of some type, but we don’t want to hard code some specific monster class. The natural
solution then is to make it a type parameter, which templates let us do:

I’m not sure if C++ programmers learned to love them or if templates just scared some people completely away from C++. Either
way, everyone I see using C++ today uses templates too.

class Spawner
{
public:
 virtual ~Spawner() {}
 virtual Monster* spawnMonster() = 0;
};

template <class T>
class SpawnerFor : public Spawner
{
public:
 virtual Monster* spawnMonster() { return new T(); }
};

Using it looks like:

Spawner* ghostSpawner = new SpawnerFor<Ghost>();

The Spawner class here is so that code that doesn’t care what kind of monster a spawner creates can just use it and work with
pointers to Monster.

If we only had the SpawnerFor<T> class, there would be no single supertype the instantiations of that template all shared, so any code
that worked with spawners of any monster type would itself need to take a template parameter.

First-class types

The previous two solutions address the need to have a class, Spawner, which is parameterized by a
type. In C++, types aren’t generally first-class, so that requires some gymnastics. If you’re using a
dynamically-typed language like JavaScript, Python, or Ruby where classes are regular objects you
can pass around, you can solve this much more directly.

In some ways, the Type Object pattern is another workaround for the lack of first-class types. That pattern can still be useful even in
languages with them, though, because it lets you define what a “type” is. You may want different semantics than what the language’s
built-in classes provide.

When you make a spawner, just pass in the class of monster that it should construct — the actual
runtime object that represents the monster’s class. Easy as pie.

With all of these options, I honestly can’t say I’ve found a case where I felt the Prototype design

pattern was the best answer. Maybe your experience will be different, but for now let’s put that away
and talk about something else: prototypes as a language paradigm.

The Prototype Language Paradigm
Many people think “object-oriented programming” is synonymous with “classes”. Definitions of OOP
tend to feel like credos of opposing religious denominations, but a fairly non-contentious take on it is
that OOP lets you define “objects” which bundle data and code together. Compared to structured
languages like C and functional languages like Scheme, the defining characteristic of OOP is that it
tightly binds state and behavior together.

You may think classes are the one and only way to do that, but a handful of guys including Dave Ungar
and Randall Smith beg to differ. They created a language in the 80s called Self. While as OOP as can
be, it has no classes.

Self

In a pure sense, Self is more object-oriented than a class-based language. We think of OOP as
marrying state and behavior, but languages with classes actually have a line of separation between
them.

Consider the semantics of your favorite class-based language. To access some state on an object, you
look in the memory of the instance itself. State is contained in the instance.

To invoke a method, though, you look up the instance’s class, and then you look up the method there.
Behavior is contained in the class. There’s always that level of indirection to get to a method, which
means fields and methods are different.

For example, to invoke a virtual method in C++, you look in the instance for the pointer to its vtable, then look up the method there.

Self eliminates that distinction. To look up anything, you just look on the object. An instance can
contain both state and behavior. You can have a single object that has a method completely unique to
it.

No man is an island, but this object is.

If that was all Self did, it would be hard to use. Inheritance in class-based languages, despite its
faults, gives you a useful mechanism for reusing polymorphic code and avoiding duplication. To
accomplish something similar without classes, Self has delegation.

To find a field or call a method on some object, we first look in the object itself. If it has it, we’re
done. If it doesn’t, we look at the object’s parent. This is just a reference to some other object. When
we fail to find a property on the first object, we try its parent, and its parent, and so on. In other
words, failed lookups are delegated to an object’s parent.

I’m simplifying here. Self actually supports multiple parents. Parents are just specially marked fields, which means you can do things
like inherit parents or change them at runtime, leading to what’s called dynamic inheritance.

Parent objects let us reuse behavior (and state!) across multiple objects, so we’ve covered part of the
utility of classes. The other key thing classes do is give us a way to create instances. When you need a
new thingamabob, you can just do new Thingamabob(), or whatever your preferred language’s
syntax is. A class is a factory for instances of itself.

Without classes, how do we make new things? In particular, how do we make a bunch of new things
that all have stuff in common? Just like the design pattern, the way you do this in Self is by cloning.

In Self, it’s as if every object supports the Prototype design pattern automatically. Any object can be
cloned. To make a bunch of similar objects, you:

1. Beat one object into the shape you want. You can just clone the base Object built into the
system and then stuff fields and methods into it.

2. Clone it to make as many… uh… clones as you want.

This gives us the elegance of the Prototype design pattern without the tedium of having to implement
clone() ourselves; it’s built into the system.

This is such a beautiful, clever, minimal system that as soon as I learned about it, I started creating a
prototype-based language to get more experience with it.

I realize building a language from scratch is not the most efficient way to learn, but what can I say? I’m a bit peculiar. If you’re
curious, the language is called Finch.

How did it go?

I was super excited to play with a pure prototype-based language, but once I had mine up and running,
I discovered an unpleasant fact: it just wasn’t that fun to program in.

http://finch.stuffwithstuff.com/

I’ve since heard through the grapevine that many of the Self programmers came to the same conclusion. The project was far from a
loss, though. Self was so dynamic that it needed all sorts of virtual machine innovations in order to run fast enough.

The ideas they invented for just-in-time compilation, garbage collection, and optimizing method dispatch are the exact same techniques
— often implemented by the same people! — that now make many of the world’s dynamically-typed languages fast enough to use for
massively popular applications.

Sure, the language was simple to implement, but that was because it punted the complexity onto the
user. As soon as I started trying to use it, I found myself missing the structure that classes give. I
ended up trying to recapitulate it at the library level since the language didn’t have it.

Maybe this is because my prior experience is in class-based languages, so my mind has been tainted
by that paradigm. But my hunch is that most people just like well-defined “kinds of things”.

In addition to the runaway success of class-based languages, look at how many games have explicit
character classes and a precise roster of different sorts of enemies, items, and skills, each neatly
labeled. You don’t see many games where each monster is a unique snowflake, like “sort of halfway
between a troll and a goblin with a bit of snake mixed in”.

While prototypes are a really cool paradigm and one that I wish more people knew about, I’m glad
that most of us aren’t actually programming using them every day. The code I’ve seen that fully
embraces prototypes has a weird mushiness to it that I find hard to wrap my head around.

It’s also telling how little code there actually is written in a prototypal style. I’ve looked.

What about JavaScript?

OK, if prototype-based languages are so unfriendly, how do I explain JavaScript? Here’s a language
with prototypes used by millions of people every day. More computers run JavaScript than any other
language on Earth.

Brendan Eich, the creator of JavaScript, took inspiration directly from Self, and many of JavaScript’s
semantics are prototype-based. Each object can have an arbitrary set of properties, both fields and
“methods” (which are really just functions stored as fields). An object can also have another object,
called its “prototype”, that it delegates to if a field access fails.

As a language designer, one appealing thing about prototypes is that they are simpler to implement than classes. Eich took full
advantage of this: the first version of JavaScript was created in ten days.

But, despite that, I believe that JavaScript in practice has more in common with class-based
languages than with prototypal ones. One hint that JavaScript has taken steps away from Self is that
the core operation in a prototype-based language, cloning, is nowhere to be seen.

There is no method to clone an object in JavaScript. The closest it has is Object.create(), which
lets you create a new object that delegates to an existing one. Even that wasn’t added until
ECMAScript 5, fourteen years after JavaScript came out. Instead of cloning, let me walk you through
the typical way you define types and create objects in JavaScript. You start with a constructor

function:

function Weapon(range, damage) {
 this.range = range;
 this.damage = damage;
}

This creates a new object and initializes its fields. You invoke it like:

var sword = new Weapon(10, 16);

The new here invokes the body of the Weapon() function with this bound to a new empty object. The
body adds a bunch of fields to it, then the now-filled-in object is automatically returned.

The new also does one other thing for you. When it creates that blank object, it wires it up to delegate
to a prototype object. You can get to that object directly using Weapon.prototype.

While state is added in the constructor body, to define behavior, you usually add methods to the
prototype object. Something like this:

Weapon.prototype.attack = function(target) {
 if (distanceTo(target) > this.range) {
 console.log("Out of range!");
 } else {
 target.health -= this.damage;
 }
}

This adds an attack property to the weapon prototype whose value is a function. Since every object
returned by new Weapon() delegates to Weapon.prototype, you can now call sword.attack() and
it will call that function. It looks a bit like this:

Let’s review:

The way you create objects is by a “new” operation that you invoke using an object that
represents the type — the constructor function.

State is stored on the instance itself.

Behavior goes through a level of indirection — delegating to the prototype — and is stored on a
separate object that represents the set of methods shared by all objects of a certain type.

Call me crazy, but that sounds a lot like my description of classes earlier. You can write prototype-
style code in JavaScript (sans cloning), but the syntax and idioms of the language encourage a class-
based approach.

Personally, I think that’s a good thing. Like I said, I find doubling down on prototypes makes code
harder to work with, so I like that JavaScript wraps the core semantics in something a little more
classy.

Prototypes for Data Modeling
OK, I keep talking about things I don’t like prototypes for, which is making this chapter a real
downer. I think of this book as more comedy than tragedy, so let’s close this out with an area where I
do think prototypes, or more specifically delegation, can be useful.

If you were to count all the bytes in a game that are code compared to the ones that are data, you’d see
the fraction of data has been increasing steadily since the dawn of programming. Early games
procedurally generated almost everything so they could fit on floppies and old game cartridges. In
many games today, the code is just an “engine” that drives the game, which is defined entirely in data.

That’s great, but pushing piles of content into data files doesn’t magically solve the organizational
challenges of a large project. If anything, it makes it harder. The reason we use programming
languages is because they have tools for managing complexity.

Instead of copying and pasting a chunk of code in ten places, we move it into a function that we can
call by name. Instead of copying a method in a bunch of classes, we can put it in a separate class that
those classes inherit from or mix in.

When your game’s data reaches a certain size, you really start wanting similar features. Data
modeling is a deep subject that I can’t hope to do justice here, but I do want to throw out one feature
for you to consider in your own games: using prototypes and delegation for reusing data.

Let’s say we’re defining the data model for the shameless Gauntlet rip-off I mentioned earlier. The
game designers need to specify the attributes for monsters and items in some kind of files.

I mean completely original title in no way inspired by any previously existing top-down multi-player dungeon crawl arcade games.
Please don’t sue me.

One common approach is to use JSON. Data entities are basically maps, or property bags, or any of
a dozen other terms because there’s nothing programmers like more than inventing a new name for
something that already has one.

We’ve re-invented them so many times that Steve Yegge calls them “The Universal Design Pattern”.

So a goblin in the game might be defined something like this:

{
 "name": "goblin grunt",
 "minHealth": 20,
 "maxHealth": 30,
 "resists": ["cold", "poison"],
 "weaknesses": ["fire", "light"]
}

This is pretty straightforward and even the most text-averse designer can handle that. So you throw in
a couple of sibling branches on the Great Goblin Family Tree:

{

http://steve-yegge.blogspot.com/2008/10/universal-design-patter n.html

 "name": "goblin wizard",
 "minHealth": 20,
 "maxHealth": 30,
 "resists": ["cold", "poison"],
 "weaknesses": ["fire", "light"],
 "spells": ["fire ball", "lightning bolt"]
}

{
 "name": "goblin archer",
 "minHealth": 20,
 "maxHealth": 30,
 "resists": ["cold", "poison"],
 "weaknesses": ["fire", "light"],
 "attacks": ["short bow"]
}

Now, if this was code, our aesthetic sense would be tingling. There’s a lot of duplication between
these entities, and well-trained programmers hate that. It wastes space and takes more time to author.
You have to read carefully to tell if the data even is the same. It’s a maintenance headache. If we
decide to make all of the goblins in the game stronger, we need to remember to update the health of
all three of them. Bad bad bad.

If this was code, we’d create an abstraction for a “goblin” and reuse that across the three goblin
types. But dumb JSON doesn’t know anything about that. So let’s make it a bit smarter.

We’ll declare that if an object has a "prototype" field, then that defines the name of another object
that this one delegates to. Any properties that don’t exist on the first object fall back to being looked
up on the prototype.

This makes the "prototype" a piece of metadata instead of data. Goblins have warty green skin and yellow teeth. They don’t have
prototypes. Prototypes are a property of the data object representing the goblin, and not the goblin itself.

With that, we can simplify the JSON for our goblin horde:

{
 "name": "goblin grunt",
 "minHealth": 20,
 "maxHealth": 30,
 "resists": ["cold", "poison"],
 "weaknesses": ["fire", "light"]
}

{
 "name": "goblin wizard",
 "prototype": "goblin grunt",
 "spells": ["fire ball", "lightning bolt"]
}

{
 "name": "goblin archer",
 "prototype": "goblin grunt",
 "attacks": ["short bow"]
}

Since the archer and wizard have the grunt as their prototype, we don’t have to repeat the health,
resists, and weaknesses in each of them. The logic we’ve added to our data model is super simple
— basic single delegation — but we’ve already gotten rid of a bunch of duplication.

One interesting thing to note here is that we didn’t set up a fourth “base goblin” abstract prototype for
the three concrete goblin types to delegate to. Instead, we just picked one of the goblins who was the
simplest and delegated to it.

That feels natural in a prototype-based system where any object can be used as a clone to create new
refined objects, and I think it’s equally natural here too. It’s a particularly good fit for data in games
where you often have one-off special entities in the game world.

Think about bosses and unique items. These are often refinements of a more common object in the
game, and prototypal delegation is a good fit for defining those. The magic Sword of Head-Detaching,
which is really just a longsword with some bonuses, can be expressed as that directly:

{
 "name": "Sword of Head-Detaching",
 "prototype": "longsword",
 "damageBonus": "20"
}

A little extra power in your game engine’s data modeling system can make it easier for designers to
add lots of little variations to the armaments and beasties populating your game world, and that
richness is exactly what delights players.

Singleton
This chapter is an anomaly. Every other chapter in this book shows you how to use a design pattern.
This chapter shows you how not to use one.

Despite noble intentions, the Singleton pattern described by the Gang of Four usually does more harm
than good. They stress that the pattern should be used sparingly, but that message was often lost in
translation to the game industry.

Like any pattern, using Singleton where it doesn’t belong is about as helpful as treating a bullet
wound with a splint. Since it’s so overused, most of this chapter will be about avoiding singletons,
but first, let’s go over the pattern itself.

When much of the industry moved to object-oriented programming from C, one problem they ran into was “how do I get an instance?”
They had some method they wanted to call but didn’t have an instance of the object that provides that method in hand. Singletons (in
other words, making it global) were an easy way out.

http://c2.com/cgi/wiki?SingletonPattern

The Singleton Pattern
Design Patterns summarizes Singleton like this:

Ensure a class has one instance, and provide a global point of access to it.

We’ll split that at “and” and consider each half separately.

Restricting a class to one instance

There are times when a class cannot perform correctly if there is more than one instance of it. The
common case is when the class interacts with an external system that maintains its own global state.

Consider a class that wraps an underlying file system API. Because file operations can take a while
to complete, our class performs operations asynchronously. This means multiple operations can be
running concurrently, so they must be coordinated with each other. If we start one call to create a file
and another one to delete that same file, our wrapper needs to be aware of both to make sure they
don’t interfere with each other.

To do this, a call into our wrapper needs to have access to every previous operation. If users could
freely create instances of our class, one instance would have no way of knowing about operations that
other instances started. Enter the singleton. It provides a way for a class to ensure at compile time that
there is only a single instance of the class.

Providing a global point of access

Several different systems in the game will use our file system wrapper: logging, content loading,
game state saving, etc. If those systems can’t create their own instances of our file system wrapper,
how can they get ahold of one?

Singleton provides a solution to this too. In addition to creating the single instance, it also provides a
globally available method to get it. This way, anyone anywhere can get their paws on our blessed
instance. All together, the classic implementation looks like this:

class FileSystem
{
public:
 static FileSystem& instance()
 {
 // Lazy initialize.
 if (instance_ == NULL) instance_ = new FileSystem();
 return *instance_;
 }

private:
 FileSystem() {}

 static FileSystem* instance_;

};

The static instance_ member holds an instance of the class, and the private constructor ensures that
it is the only one. The public static instance() method grants access to the instance from anywhere
in the codebase. It is also responsible for instantiating the singleton instance lazily the first time
someone asks for it.

A modern take looks like this:

class FileSystem
{
public:
 static FileSystem& instance()
 {
 static FileSystem *instance = new FileSystem();
 return *instance;
 }

private:
 FileSystem() {}
};

C++11 mandates that the initializer for a local static variable is only run once, even in the presence of
concurrency. So, assuming you’ve got a modern C++ compiler, this code is thread-safe where the first
example is not.

Of course, the thread-safety of your singleton class itself is an entirely different question! This just ensures that its initialization is.

Why We Use It
It seems we have a winner. Our file system wrapper is available wherever we need it without the
tedium of passing it around everywhere. The class itself cleverly ensures we won’t make a mess of
things by instantiating a couple of instances. It’s got some other nice features too:

It doesn’t create the instance if no one uses it. Saving memory and CPU cycles is always
good. Since the singleton is initialized only when it’s first accessed, it won’t be instantiated at
all if the game never asks for it.

It’s initialized at runtime. A common alternative to Singleton is a class with static member
variables. I like simple solutions, so I use static classes instead of singletons when possible, but
there’s one limitation static members have: automatic initialization. The compiler initializes
statics before main() is called. This means they can’t use information known only once the
program is up and running (for example, configuration loaded from a file). It also means they
can’t reliably depend on each other — the compiler does not guarantee the order in which
statics are initialized relative to each other.

Lazy initialization solves both of those problems. The singleton will be initialized as late as
possible, so by that time any information it needs should be available. As long as they don’t have
circular dependencies, one singleton can even refer to another when initializing itself.

You can subclass the singleton. This is a powerful but often overlooked capability. Let’s say
we need our file system wrapper to be cross-platform. To make this work, we want it to be an
abstract interface for a file system with subclasses that implement the interface for each
platform. Here is the base class:

class FileSystem
{
public:
 virtual ~FileSystem() {}
 virtual char* readFile(char* path) = 0;
 virtual void writeFile(char* path, char* contents) = 0;
};

Then we define derived classes for a couple of platforms:

class PS3FileSystem : public FileSystem
{
public:
 virtual char* readFile(char* path)
 {
 // Use Sony file IO API...
 }

 virtual void writeFile(char* path, char* contents)
 {
 // Use sony file IO API...
 }
};

class WiiFileSystem : public FileSystem

{
public:
 virtual char* readFile(char* path)
 {
 // Use Nintendo file IO API...
 }

 virtual void writeFile(char* path, char* contents)
 {
 // Use Nintendo file IO API...
 }
};

Next, we turn FileSystem into a singleton:

class FileSystem
{
public:
 static FileSystem& instance();

 virtual ~FileSystem() {}
 virtual char* readFile(char* path) = 0;
 virtual void writeFile(char* path, char* contents) = 0;

protected:
 FileSystem() {}
};

The clever part is how the instance is created:

FileSystem& FileSystem::instance()
{
 #if PLATFORM == PLAYSTATION3
 static FileSystem *instance = new PS3FileSystem();
 #elif PLATFORM == WII
 static FileSystem *instance = new WiiFileSystem();
 #endif

 return *instance;
}

With a simple compiler switch, we bind our file system wrapper to the appropriate concrete
type. Our entire codebase can access the file system using FileSystem::instance() without
being coupled to any platform-specific code. That coupling is instead encapsulated within the
implementation file for the FileSystem class itself.

This takes us about as far as most of us go when it comes to solving a problem like this. We’ve got a
file system wrapper. It works reliably. It’s available globally so every place that needs it can get to
it. It’s time to check in the code and celebrate with a tasty beverage.

Why We Regret Using It
In the short term, the Singleton pattern is relatively benign. Like many design choices, we pay the cost
in the long term. Once we’ve cast a few unnecessary singletons into cold hard code, here’s the trouble
we’ve bought ourselves:

It’s a global variable

When games were still written by a couple of guys in a garage, pushing the hardware was more
important than ivory-tower software engineering principles. Old-school C and assembly coders used
globals and statics without any trouble and shipped good games. As games got bigger and more
complex, architecture and maintainability started to become the bottleneck. We struggled to ship
games not because of hardware limitations, but because of productivity limitations.

So we moved to languages like C++ and started applying some of the hard-earned wisdom of our
software engineer forebears. One lesson we learned is that global variables are bad for a variety of
reasons:

They make it harder to reason about code. Say we’re tracking down a bug in a function
someone else wrote. If that function doesn’t touch any global state, we can wrap our heads
around it just by understanding the body of the function and the arguments being passed to it.

Computer scientists call functions that don’t access or modify global state “pure” functions. Pure functions are easier to reason
about, easier for the compiler to optimize, and let you do neat things like memoization where you cache and reuse the results
from previous calls to the function.

While there are challenges to using purity exclusively, the benefits are enticing enough that computer scientists have created
languages like Haskell that only allow pure functions.

Now, imagine right in the middle of that function is a call to
SomeClass::getSomeGlobalData(). To figure out what’s going on, we have to hunt through
the entire codebase to see what touches that global data. You don’t really hate global state until
you’ve had to grep a million lines of code at three in the morning trying to find the one errant
call that’s setting a static variable to the wrong value.

They encourage coupling. The new coder on your team isn’t familiar with your game’s
beautifully maintainable loosely coupled architecture, but he’s just been given his first task:
make boulders play sounds when they crash onto the ground. You and I know we don’t want the
physics code to be coupled to audio of all things, but he’s just trying to get his task done.
Unfortunately for us, the instance of our AudioPlayer is globally visible. So, one little
#include later, and our new guy has compromised a carefully constructed architecture.

Without a global instance of the audio player, even if he did #include the header, he still
wouldn’t be able to do anything with it. That difficulty sends a clear message to him that those
two modules should not know about each other and that he needs to find another way to solve his

problem. By controlling access to instances, you control coupling.

They aren’t concurrency-friendly. The days of games running on a simple single-core CPU are
pretty much over. Code today must at the very least work in a multi-threaded way even if it
doesn’t take full advantage of concurrency. When we make something global, we’ve created a
chunk of memory that every thread can see and poke at, whether or not they know what other
threads are doing to it. That path leads to deadlocks, race conditions, and other hell-to-fix
thread-synchronization bugs.

Issues like these are enough to scare us away from declaring a global variable, and thus the Singleton
pattern too, but that still doesn’t tell us how we should design the game. How do you architect a game
without global state?

There are some extensive answers to that question (most of this book in many ways is an answer to
just that), but they aren’t apparent or easy to come by. In the meantime, we have to get games out the
door. The Singleton pattern looks like a panacea. It’s in a book on object-oriented design patterns, so
it must be architecturally sound, right? And it lets us design software the way we have been doing for
years.

Unfortunately, it’s more placebo than cure. If you scan the list of problems that globals cause, you’ll
notice that the Singleton pattern doesn’t solve any of them. That’s because a singleton is global state
— it’s just encapsulated in a class.

It solves two problems even when you just have one

The word “and” in the Gang of Four’s description of Singleton is a bit strange. Is this pattern a
solution to one problem or two? What if we have only one of those? Ensuring a single instance is
useful, but who says we want to let everyone poke at it? Likewise, global access is convenient, but
that’s true even for a class that allows multiple instances.

The latter of those two problems, convenient access, is almost always why we turn to the Singleton
pattern. Consider a logging class. Most modules in the game can benefit from being able to log
diagnostic information. However, passing an instance of our Log class to every single function
clutters the method signature and distracts from the intent of the code.

The obvious fix is to make our Log class a singleton. Every function can then go straight to the class
itself to get an instance. But when we do that, we inadvertently acquire a strange little restriction. All
of a sudden, we can no longer create more than one logger.

At first, this isn’t a problem. We’re writing only a single log file, so we only need one instance
anyway. Then, deep in the development cycle, we run into trouble. Everyone on the team has been
using the logger for their own diagnostics, and the log file has become a massive dumping ground.
Programmers have to wade through pages of text just to find the one entry they care about.

We’d like to fix this by partitioning the logging into multiple files. To do this, we’ll have separate

loggers for different game domains: online, UI, audio, gameplay. But we can’t. Not only does our Log
class no longer allow us to create multiple instances, that design limitation is entrenched in every
single call site that uses it:

Log::instance().write("Some event.");

In order to make our Log class support multiple instantiation (like it originally did), we’ll have to fix
both the class itself and every line of code that mentions it. Our convenient access isn’t so convenient
anymore.

It could be even worse than this. Imagine your Log class is in a library being shared across several games. Now, to change the design,
you’ll have to coordinate the change across several groups of people, most of whom have neither the time nor the motivation to fix it.

Lazy initialization takes control away from you

In the desktop PC world of virtual memory and soft performance requirements, lazy initialization is a
smart trick. Games are a different animal. Initializing a system can take time: allocating memory,
loading resources, etc. If initializing the audio system takes a few hundred milliseconds, we need to
control when that’s going to happen. If we let it lazy-initialize itself the first time a sound plays, that
could be in the middle of an action-packed part of the game, causing visibly dropped frames and
stuttering gameplay.

Likewise, games generally need to closely control how memory is laid out in the heap to avoid
fragmentation. If our audio system allocates a chunk of heap when it initializes, we want to know
when that initialization is going to happen, so that we can control where in the heap that memory will
live.

See Object Pool for a detailed explanation of memory fragmentation.

Because of these two problems, most games I’ve seen don’t rely on lazy initialization. Instead, they
implement the Singleton pattern like this:

class FileSystem
{
public:
 static FileSystem& instance() { return instance_; }

private:
 FileSystem() {}

 static FileSystem instance_;
};

That solves the lazy initialization problem, but at the expense of discarding several singleton features
that do make it better than a raw global variable. With a static instance, we can no longer use
polymorphism, and the class must be constructible at static initialization time. Nor can we free the
memory that the instance is using when not needed.

Instead of creating a singleton, what we really have here is a simple static class. That isn’t
necessarily a bad thing, but if a static class is all you need, why not get rid of the instance() method

entirely and use static functions instead? Calling Foo::bar() is simpler than
Foo::instance().bar(), and also makes it clear that you really are dealing with static memory.

The usual argument for choosing singletons over static classes is that if you decide to change the static class into a non-static one
later, you’ll need to fix every call site. In theory, you don’t have to do that with singletons because you could be passing the instance
around and calling it like a normal instance method.

In practice, I’ve never seen it work that way. Everyone just does Foo::instance().bar() in one line. If we changed Foo to not be a
singleton, we’d still have to touch every call site. Given that, I’d rather have a simpler class and a simpler syntax to call into it.

What We Can Do Instead
If I’ve accomplished my goal so far, you’ll think twice before you pull Singleton out of your toolbox
the next time you have a problem. But you still have a problem that needs solving. What tool should
you pull out? Depending on what you’re trying to do, I have a few options for you to consider, but
first…

See if you need the class at all

Many of the singleton classes I see in games are “managers” — those nebulous classes that exist just
to babysit other objects. I’ve seen codebases where it seems like every class has a manager: Monster,
MonsterManager, Particle, ParticleManager, Sound, SoundManager, ManagerManager. Sometimes,
for variety, they’ll throw a “System” or “Engine” in there, but it’s still the same idea.

While caretaker classes are sometimes useful, often they just reflect unfamiliarity with OOP.
Consider these two contrived classes:

class Bullet
{
public:
 int getX() const { return x_; }
 int getY() const { return y_; }

 void setX(int x) { x_ = x; }
 void setY(int y) { y_ = y; }

private:
 int x_, y_;
};

class BulletManager
{
public:
 Bullet* create(int x, int y)
 {
 Bullet* bullet = new Bullet();
 bullet->setX(x);
 bullet->setY(y);

 return bullet;
 }

 bool isOnScreen(Bullet& bullet)
 {
 return bullet.getX() >= 0 &&
 bullet.getX() < SCREEN_WIDTH &&
 bullet.getY() >= 0 &&
 bullet.getY() < SCREEN_HEIGHT;
 }

 void move(Bullet& bullet)
 {
 bullet.setX(bullet.getX() + 5);
 }
};

Maybe this example is a bit dumb, but I’ve seen plenty of code that reveals a design just like this after
you scrape away the crusty details. If you look at this code, it’s natural to think that BulletManager
should be a singleton. After all, anything that has a Bullet will need the manager too, and how many
instances of BulletManager do you need?

The answer here is zero, actually. Here’s how we solve the “singleton” problem for our manager
class:

class Bullet
{
public:
 Bullet(int x, int y) : x_(x), y_(y) {}

 bool isOnScreen()
 {
 return x_ >= 0 && x_ < SCREEN_WIDTH &&
 y_ >= 0 && y_ < SCREEN_HEIGHT;
 }

 void move() { x_ += 5; }

private:
 int x_, y_;
};

There we go. No manager, no problem. Poorly designed singletons are often “helpers” that add
functionality to another class. If you can, just move all of that behavior into the class it helps. After
all, OOP is about letting objects take care of themselves.

Outside of managers, though, there are other problems where we’d reach to Singleton for a solution.
For each of those problems, there are some alternative solutions to consider.

To limit a class to a single instance

This is one half of what the Singleton pattern gives you. As in our file system example, it can be
critical to ensure there’s only a single instance of a class. However, that doesn’t necessarily mean we
also want to provide public, global access to that instance. We may want to restrict access to certain
areas of the code or even make it private to a single class. In those cases, providing a public global
point of access weakens the architecture.

For example, we may be wrapping our file system wrapper inside another layer of abstraction.

We want a way to ensure single instantiation without providing global access. There are a couple of
ways to accomplish this. Here’s one:

class FileSystem
{
public:
 FileSystem()
 {
 assert(!instantiated_);
 instantiated_ = true;
 }

 ~FileSystem() { instantiated_ = false; }

private:
 static bool instantiated_;
};

bool FileSystem::instantiated_ = false;

This class allows anyone to construct it, but it will assert and fail if you try to construct more than one
instance. As long as the right code creates the instance first, then we’ve ensured no other code can
either get at that instance or create their own. The class ensures the single instantiation requirement it
cares about, but it doesn’t dictate how the class should be used.

An assertion function is a way of embedding a contract into your code. When assert() is called, it evaluates the expression passed
to it. If it evaluates to true, then it does nothing and lets the game continue. If it evaluates to false, it immediately halts the game at
that point. In a debug build, it will usually bring up the debugger or at least print out the file and line number where the assertion failed.

An assert() means, “I assert that this should always be true. If it’s not, that’s a bug and I want to stop now so you can fix it.” This
lets you define contracts between regions of code. If a function asserts that one of its arguments is not NULL, that says, “The contract
between me and the caller is that I will not be passed NULL.”

Assertions help us track down bugs as soon as the game does something unexpected, not later when that error finally manifests as
something visibly wrong to the user. They are fences in your codebase, corralling bugs so that they can’t escape from the code that
created them.

The downside with this implementation is that the check to prevent multiple instantiation is only done
at runtime. The Singleton pattern, in contrast, guarantees a single instance at compile time by the very
nature of the class’s structure.

To provide convenient access to an instance

Convenient access is the main reason we reach for singletons. They make it easy to get our hands on
an object we need to use in a lot of different places. That ease comes at a cost, though — it becomes
equally easy to get our hands on the object in places where we don’t want it being used.

The general rule is that we want variables to be as narrowly scoped as possible while still getting the
job done. The smaller the scope an object has, the fewer places we need to keep in our head while
we’re working with it. Before we take the shotgun approach of a singleton object with global scope,
let’s consider other ways our codebase can get access to an object:

Pass it in. The simplest solution, and often the best, is to simply pass the object you need as an
argument to the functions that need it. It’s worth considering before we discard it as too
cumbersome.

Some use the term “dependency injection” to refer to this. Instead of code reaching out and finding its dependencies by calling
into something global, the dependencies are pushed in to the code that needs it through parameters. Others reserve
“dependency injection” for more complex ways of providing dependencies to code.

Consider a function for rendering objects. In order to render, it needs access to an object that
represents the graphics device and maintains the render state. It’s very common to simply pass
that in to all of the rendering functions, usually as a parameter named something like context.

On the other hand, some objects don’t belong in the signature of a method. For example, a
function that handles AI may need to also write to a log file, but logging isn’t its core concern. It
would be strange to see Log show up in its argument list, so for cases like that we’ll want to
consider other options.

The term for things like logging that appear scattered throughout a codebase is “cross-cutting concern”. Handling cross-cutting
concerns gracefully is a continuing architectural challenge, especially in statically typed languages.

Aspect-oriented programming was designed to address these concerns.

Get it from the base class. Many game architectures have shallow but wide inheritance
hierarchies, often only one level deep. For example, you may have a base GameObject class
with derived classes for each enemy or object in the game. With architectures like this, a large
portion of the game code will live in these “leaf” derived classes. This means that all these
classes already have access to the same thing: their GameObject base class. We can use that to
our advantage:

class GameObject
{
protected:
 Log& getLog() { return log_; }

private:
 static Log& log_;
};

class Enemy : public GameObject
{
 void doSomething()
 {
 getLog().write("I can log!");
 }
};

This ensures nothing outside of GameObject has access to its Log object, but every derived
entity does using getLog(). This pattern of letting derived objects implement themselves in
terms of protected methods provided to them is covered in the Subclass Sandbox chapter.

This raises the question, “how does GameObject get the Log instance?” A simple solution is to have the base class simply create
and own a static instance.

If you don’t want the base class to take such an active role, you can provide an initialization function to pass it in or use the
Service Locator pattern to find it.

Get it from something already global. The goal of removing all global state is admirable, but
rarely practical. Most codebases will still have a couple of globally available objects, such as a
single Game or World object representing the entire game state.

We can reduce the number of global classes by piggybacking on existing ones like that. Instead
of making singletons out of Log, FileSystem, and AudioPlayer, do this:

class Game
{
public:
 static Game& instance() { return instance_; }

http://en.wikipedia.org/wiki/Aspect-oriented_programming

 // Functions to set log_, et. al. ...

 Log& getLog() { return *log_; }
 FileSystem& getFileSystem() { return *fileSystem_; }
 AudioPlayer& getAudioPlayer() { return *audioPlayer_; }

private:
 static Game instance_;

 Log *log_;
 FileSystem *fileSystem_;
 AudioPlayer *audioPlayer_;
};

With this, only Game is globally available. Functions can get to the other systems through it:

Game::instance().getAudioPlayer().play(VERY_LOUD_BANG);

Purists will claim this violates the Law of Demeter. I claim that’s still better than a giant pile of singletons.

If, later, the architecture is changed to support multiple Game instances (perhaps for streaming or
testing purposes), Log, FileSystem, and AudioPlayer are all unaffected — they won’t even
know the difference. The downside with this, of course, is that more code ends up coupled to
Game itself. If a class just needs to play sound, our example still requires it to know about the
world in order to get to the audio player.

We solve this with a hybrid solution. Code that already knows about Game can simply access
AudioPlayer directly from it. For code that doesn’t, we provide access to AudioPlayer using
one of the other options described here.

Get it from a Service Locator. So far, we’re assuming the global class is some regular
concrete class like Game. Another option is to define a class whose sole reason for being is to
give global access to objects. This common pattern is called a Service Locator and gets its own
chapter.

What’s Left for Singleton
The question remains, where should we use the real Singleton pattern? Honestly, I’ve never used the
full Gang of Four implementation in a game. To ensure single instantiation, I usually simply use a
static class. If that doesn’t work, I’ll use a static flag to check at runtime that only one instance of the
class is constructed.

There are a couple of other chapters in this book that can also help here. The Subclass Sandbox
pattern gives instances of a class access to some shared state without making it globally available.
The Service Locator pattern does make an object globally available, but it gives you more flexibility
with how that object is configured.

State
Confession time: I went a little overboard and packed way too much into this chapter. It’s ostensibly
about the State design pattern, but I can’t talk about that and games without going into the more
fundamental concept of finite state machines (or “FSMs”). But then once I went there, I figured I
might as well introduce hierarchical state machines and pushdown automata.

That’s a lot to cover, so to keep things as short as possible, the code samples here leave out a few
details that you’ll have to fill in on your own. I hope they’re still clear enough for you to get the big
picture.

Don’t feel sad if you’ve never heard of a state machine. While well known to AI and compiler
hackers, they aren’t that familiar to other programming circles. I think they should be more widely
known, so I’m going to throw them at a different kind of problem here.

This pairing echoes the early days of artificial intelligence. In the ’50s and ’60s, much of AI research was focused on language
processing. Many of the techniques compilers now use for parsing programming languages were invented for parsing human
languages.

http://en.wikipedia.org/wiki/State_pattern

We’ve All Been There
We’re working on a little side-scrolling platformer. Our job is to implement the heroine that is the
player’s avatar in the game world. That means making her respond to user input. Push the B button
and she should jump. Simple enough:

void Heroine::handleInput(Input input)
{
 if (input == PRESS_B)
 {
 yVelocity_ = JUMP_VELOCITY;
 setGraphics(IMAGE_JUMP);
 }
}

Spot the bug?

There’s nothing to prevent “air jumping” — keep hammering B while she’s in the air, and she will
float forever. The simple fix is to add an isJumping_ Boolean field to Heroine that tracks when
she’s jumping, and then do:

void Heroine::handleInput(Input input)
{
 if (input == PRESS_B)
 {
 if (!isJumping_)
 {
 isJumping_ = true;
 // Jump...
 }
 }
}

There should also be code that sets isJumping_ back to false when the heroine touches the ground. I’ve omitted that here for
brevity’s sake.

Next, we want the heroine to duck if the player presses down while she’s on the ground and stand
back up when the button is released:

void Heroine::handleInput(Input input)
{
 if (input == PRESS_B)
 {
 // Jump if not jumping...
 }
 else if (input == PRESS_DOWN)
 {
 if (!isJumping_)
 {
 setGraphics(IMAGE_DUCK);
 }
 }
 else if (input == RELEASE_DOWN)
 {
 setGraphics(IMAGE_STAND);
 }
}

Spot the bug this time?

With this code, the player could:

1. Press down to duck.
2. Press B to jump from a ducking position.
3. Release down while still in the air.

The heroine will switch to her standing graphic in the middle of the jump. Time for another flag…

void Heroine::handleInput(Input input)
{
 if (input == PRESS_B)
 {
 if (!isJumping_ && !isDucking_)
 {
 // Jump...
 }
 }
 else if (input == PRESS_DOWN)
 {
 if (!isJumping_)
 {
 isDucking_ = true;
 setGraphics(IMAGE_DUCK);
 }
 }
 else if (input == RELEASE_DOWN)
 {
 if (isDucking_)
 {
 isDucking_ = false;
 setGraphics(IMAGE_STAND);
 }
 }
}

Next, it would be cool if the heroine did a dive attack if the player presses down in the middle of a
jump:

void Heroine::handleInput(Input input)
{
 if (input == PRESS_B)
 {
 if (!isJumping_ && !isDucking_)
 {
 // Jump...
 }
 }
 else if (input == PRESS_DOWN)
 {
 if (!isJumping_)
 {
 isDucking_ = true;
 setGraphics(IMAGE_DUCK);
 }
 else
 {
 isJumping_ = false;
 setGraphics(IMAGE_DIVE);
 }
 }
 else if (input == RELEASE_DOWN)

 {
 if (isDucking_)
 {
 // Stand...
 }
 }
}

Bug hunting time again. Find it?

We check that you can’t air jump while jumping, but not while diving. Yet another field…

Something is clearly wrong with our approach. Every time we touch this handful of code, we break
something. We need to add a bunch more moves — we haven’t even added walking yet — but at this
rate, it will collapse into a heap of bugs before we’re done with it.

Those coders you idolize who always seem to create flawless code aren’t simply superhuman programmers. Instead, they have an
intuition about which kinds of code are error-prone, and they steer away from them.

Complex branching and mutable state — fields that change over time — are two of those error-prone kinds of code, and the examples
above have both.

Finite State Machines to the Rescue
In a fit of frustration, you sweep everything off your desk except a pen and paper and start drawing a
flowchart. You draw a box for each thing the heroine can be doing: standing, jumping, ducking, and
diving. When she can respond to a button press in one of those states, you draw an arrow from that
box, label it with that button, and connect it to the state she changes to.

Congratulations, you’ve just created a finite state machine. These came out of a branch of computer
science called automata theory whose family of data structures also includes the famous Turing
machine. FSMs are the simplest member of that family.

The gist is:

You have a fixed set of states that the machine can be in. For our example, that’s standing,
jumping, ducking, and diving.

The machine can only be in one state at a time. Our heroine can’t be jumping and standing
simultaneously. In fact, preventing that is one reason we’re going to use an FSM.

A sequence of inputs or events is sent to the machine. In our example, that’s the raw button
presses and releases.

Each state has a set of transitions, each associated with an input and pointing to a state.
When an input comes in, if it matches a transition for the current state, the machine changes to the
state that transition points to.

For example, pressing down while standing transitions to the ducking state. Pressing down while
jumping transitions to diving. If no transition is defined for an input on the current state, the input
is ignored.

In their pure form, that’s the whole banana: states, inputs, and transitions. You can draw it out like a
little flowchart. Unfortunately, the compiler doesn’t recognize our scribbles, so how do we go about
implementing one? The Gang of Four’s State pattern is one method — which we’ll get to — but let’s
start simpler.

My favorite analogy for FSMs is the old text adventure games like Zork. You have a world of rooms that are connected to each other
by exits. You explore them by entering commands like “go north”.

This maps directly to a state machine: Each room is a state. The room you’re in is the current state. Each room’s exits are its
transitions. The navigation commands are the inputs.

Enums and Switches
One problem our Heroine class has is some combinations of those Boolean fields aren’t valid:
isJumping_ and isDucking_ should never both be true, for example. When you have a handful of
flags where only one is true at a time, that’s a hint that what you really want is an enum.

In this case, that enum is exactly the set of states for our FSM, so let’s define that:

enum State
{
 STATE_STANDING,
 STATE_JUMPING,
 STATE_DUCKING,
 STATE_DIVING
};

Instead of a bunch of flags, Heroine will just have one state_ field. We also flip the order of our
branching. In the previous code, we switched on input, then on state. This kept the code for handling
one button press together, but it smeared around the code for one state. We want to keep that together,
so we switch on state first. That gives us:

void Heroine::handleInput(Input input)
{
 switch (state_)
 {
 case STATE_STANDING:
 if (input == PRESS_B)
 {
 state_ = STATE_JUMPING;
 yVelocity_ = JUMP_VELOCITY;
 setGraphics(IMAGE_JUMP);
 }
 else if (input == PRESS_DOWN)
 {
 state_ = STATE_DUCKING;
 setGraphics(IMAGE_DUCK);
 }
 break;

 case STATE_JUMPING:
 if (input == PRESS_DOWN)
 {
 state_ = STATE_DIVING;
 setGraphics(IMAGE_DIVE);
 }
 break;

 case STATE_DUCKING:
 if (input == RELEASE_DOWN)
 {
 state_ = STATE_STANDING;
 setGraphics(IMAGE_STAND);
 }
 break;
 }
}

This seems trivial, but it’s a real improvement over the previous code. We still have some
conditional branching, but we simplified the mutable state to a single field. All of the code for

handling a single state is now nicely lumped together. This is the simplest way to implement a state
machine and is fine for some uses.

In particular, the heroine can no longer be in an invalid state. With the Boolean flags, some sets of values were possible but
meaningless. With the enum, each value is valid.

Your problem may outgrow this solution, though. Say we want to add a move where our heroine can
duck for a while to charge up and unleash a special attack. While she’s ducking, we need to track the
charge time.

We add a chargeTime_ field to Heroine to store how long the attack has charged. Assume we
already have an update() that gets called each frame. In there, we add:

void Heroine::update()
{
 if (state_ == STATE_DUCKING)
 {
 chargeTime_++;
 if (chargeTime_ > MAX_CHARGE)
 {
 superBomb();
 }
 }
}

If you guessed that this is the Update Method pattern, you win a prize!

We need to reset the timer when she starts ducking, so we modify handleInput():

void Heroine::handleInput(Input input)
{
 switch (state_)
 {
 case STATE_STANDING:
 if (input == PRESS_DOWN)
 {
 state_ = STATE_DUCKING;
 chargeTime_ = 0;
 setGraphics(IMAGE_DUCK);
 }
 // Handle other inputs...
 break;

 // Other states...
 }
}

All in all, to add this charge attack, we had to modify two methods and add a chargeTime_ field onto
Heroine even though it’s only meaningful while in the ducking state. What we’d prefer is to have all
of that code and data nicely wrapped up in one place. The Gang of Four has us covered.

The State Pattern
For people deeply into the object-oriented mindset, every conditional branch is an opportunity to use
dynamic dispatch (in other words a virtual method call in C++). I think you can go too far down that
rabbit hole. Sometimes an if is all you need.

There’s a historical basis for this. Many of the original object-oriented apostles like Design Patterns‘ Gang of Four, and
Refactoring‘s Martin Fowler came from Smalltalk. There, ifThen: is just a method you invoke on the condition, which is
implemented differently by the true and false objects.

But in our example, we’ve reached a tipping point where something object-oriented is a better fit.
That gets us to the State pattern. In the words of the Gang of Four:

Allow an object to alter its behavior when its internal state changes. The object will appear to
change its class.

That doesn’t tell us much. Heck, our switch does that. The concrete pattern they describe looks like
this when applied to our heroine:

A state interface

First, we define an interface for the state. Every bit of behavior that is state-dependent — every place
we had a switch before — becomes a virtual method in that interface. For us, that’s handleInput()
and update():

class HeroineState
{
public:
 virtual ~HeroineState() {}
 virtual void handleInput(Heroine& heroine, Input input) {}
 virtual void update(Heroine& heroine) {}
};

Classes for each state

For each state, we define a class that implements the interface. Its methods define the heroine’s
behavior when in that state. In other words, take each case from the earlier switch statements and
move them into their state’s class. For example:

class DuckingState : public HeroineState
{
public:
 DuckingState()
 : chargeTime_(0)
 {}

 virtual void handleInput(Heroine& heroine, Input input) {
 if (input == RELEASE_DOWN)
 {
 // Change to standing state...

 heroine.setGraphics(IMAGE_STAND);
 }
 }

 virtual void update(Heroine& heroine) {
 chargeTime_++;
 if (chargeTime_ > MAX_CHARGE)
 {
 heroine.superBomb();
 }
 }

private:
 int chargeTime_;
};

Note that we also moved chargeTime_ out of Heroine and into the DuckingState class. This is
great — that piece of data is only meaningful while in that state, and now our object model reflects
that explicitly.

Delegate to the state

Next, we give the Heroine a pointer to her current state, lose each big switch, and delegate to the
state instead:

class Heroine
{
public:
 virtual void handleInput(Input input)
 {
 state_->handleInput(*this, input);
 }

 virtual void update()
 {
 state_->update(*this);
 }

 // Other methods...
private:
 HeroineState* state_;
};

In order to “change state”, we just need to assign state_ to point to a different HeroineState
object. That’s the State pattern in its entirety.

This looks like the Strategy and Type Object patterns. In all three, you have a main object that delegates to another subordinate one.
The difference is intent.

With Strategy, the goal is to decouple the main class from some portion of its behavior.

With Type Object, the goal is to make a number of objects behave similarly by sharing a reference to the same type object.

With State, the goal is for the main object to change its behavior by changing the object it delegates to.

http://en.wikipedia.org/wiki/Strategy_pattern

Where Are the State Objects?
I did gloss over one bit here. To change states, we need to assign state_ to point to the new one, but
where does that object come from? With our enum implementation, that was a no-brainer — enum
values are primitives like numbers. But now our states are classes, which means we need an actual
instance to point to. There are two common answers to this:

Static states

If the state object doesn’t have any other fields, then the only data it stores is a pointer to the internal
virtual method table so that its methods can be called. In that case, there’s no reason to ever have
more than one instance of it. Every instance would be identical anyway.

If your state has no fields and only one virtual method in it, you can simplify this pattern even more. Replace each state class with a
state function — just a plain vanilla top-level function. Then, the state_ field in your main class becomes a simple function pointer.

In that case, you can make a single static instance. Even if you have a bunch of FSMs all going at the
same time in that same state, they can all point to the same instance since it has nothing machine-
specific about it.

This is the Flyweight pattern.

Where you put that static instance is up to you. Find a place that makes sense. For no particular
reason, let’s put ours inside the base state class:

class HeroineState
{
public:
 static StandingState standing;
 static DuckingState ducking;
 static JumpingState jumping;
 static DivingState diving;

 // Other code...
};

Each of those static fields is the one instance of that state that the game uses. To make the heroine
jump, the standing state would do something like:

if (input == PRESS_B)
{
 heroine.state_ = &HeroineState::jumping;
 heroine.setGraphics(IMAGE_JUMP);
}

Instantiated states

Sometimes, though, this doesn’t fly. A static state won’t work for the ducking state. It has a
chargeTime_ field, and that’s specific to the heroine that happens to be ducking. This may

coincidentally work in our game if there’s only one heroine, but if we try to add two-player co-op and
have two heroines on screen at the same time, we’ll have problems.

In that case, we have to create a state object when we transition to it. This lets each FSM have its
own instance of the state. Of course, if we’re allocating a new state, that means we need to free the
current one. We have to be careful here, since the code that’s triggering the change is in a method in
the current state. We don’t want to delete this out from under ourselves.

Instead, we’ll allow handleInput() in HeroineState to optionally return a new state. When it
does, Heroine will delete the old one and swap in the new one, like so:

void Heroine::handleInput(Input input)
{
 HeroineState* state = state_->handleInput(*this, input);
 if (state != NULL)
 {
 delete state_;
 state_ = state;
 }
}

That way, we don’t delete the previous state until we’ve returned from its method. Now, the standing
state can transition to ducking by creating a new instance:

HeroineState* StandingState::handleInput(Heroine& heroine,
 Input input)
{
 if (input == PRESS_DOWN)
 {
 // Other code...
 return new DuckingState();
 }

 // Stay in this state.
 return NULL;
}

When I can, I prefer to use static states since they don’t burn memory and CPU cycles allocating
objects each state change. For states that are more, uh, stateful, though, this is the way to go.

When you dynamically allocate states, you may have to worry about fragmentation. The Object Pool pattern can help.

Enter and Exit Actions
The goal of the State pattern is to encapsulate all of the behavior and data for one state in a single
class. We’re partway there, but we still have some loose ends.

When the heroine changes state, we also switch her sprite. Right now, that code is owned by the state
she’s switching from. When she goes from ducking to standing, the ducking state sets her image:

HeroineState* DuckingState::handleInput(Heroine& heroine,
 Input input)
{
 if (input == RELEASE_DOWN)
 {
 heroine.setGraphics(IMAGE_STAND);
 return new StandingState();
 }

 // Other code...
}

What we really want is each state to control its own graphics. We can handle that by giving the state
an entry action:

class StandingState : public HeroineState
{
public:
 virtual void enter(Heroine& heroine)
 {
 heroine.setGraphics(IMAGE_STAND);
 }

 // Other code...
};

Back in Heroine, we modify the code for handling state changes to call that on the new state:

void Heroine::handleInput(Input input)
{
 HeroineState* state = state_->handleInput(*this, input);
 if (state != NULL)
 {
 delete state_;
 state_ = state;

 // Call the enter action on the new state.
 state_->enter(*this);
 }
}

This lets us simplify the ducking code to:

HeroineState* DuckingState::handleInput(Heroine& heroine,
 Input input)
{
 if (input == RELEASE_DOWN)
 {
 return new StandingState();
 }

 // Other code...
}

All it does is switch to standing and the standing state takes care of the graphics. Now our states
really are encapsulated. One particularly nice thing about entry actions is that they run when you enter
the state regardless of which state you’re coming from.

Most real-world state graphs have multiple transitions into the same state. For example, our heroine
will also end up standing after she lands a jump or dive. That means we would end up duplicating
some code everywhere that transition occurs. Entry actions give us a place to consolidate that.

We can, of course, also extend this to support an exit action. This is just a method we call on the state
we’re leaving right before we switch to the new state.

What’s the Catch?
I’ve spent all this time selling you on FSMs, and now I’m going to pull the rug out from under you.
Everything I’ve said so far is true, and FSMs are a good fit for some problems. But their greatest
virtue is also their greatest flaw.

State machines help you untangle hairy code by enforcing a very constrained structure on it. All
you’ve got is a fixed set of states, a single current state, and some hardcoded transitions.

A finite state machine isn’t even Turing complete. Automata theory describes computation using a series of abstract models, each
more complex than the previous. A Turing machine is one of the most expressive models.

“Turing complete” means a system (usually a programming language) is powerful enough to implement a Turing machine in it, which
means all Turing complete languages are, in some ways, equally expressive. FSMs are not flexible enough to be in that club.

If you try using a state machine for something more complex like game AI, you will slam face-first
into the limitations of that model. Thankfully, our forebears have found ways to dodge some of those
barriers. I’ll close this chapter out by walking you through a couple of them.

Concurrent State Machines
We’ve decided to give our heroine the ability to carry a gun. When she’s packing heat, she can still
do everything she could before: run, jump, duck, etc. But she also needs to be able to fire her weapon
while doing it.

If we want to stick to the confines of an FSM, we have to double the number of states we have. For
each existing state, we’ll need another one for doing the same thing while she’s armed: standing,
standing with gun, jumping, jumping with gun, you get the idea.

Add a couple of more weapons and the number of states explodes combinatorially. Not only is it a
huge number of states, it’s a huge amount of redundancy: the unarmed and armed states are almost
identical except for the little bit of code to handle firing.

The problem is that we’ve jammed two pieces of state — what she’s doing and what she’s carrying
— into a single machine. To model all possible combinations, we would need a state for each pair.
The fix is obvious: have two separate state machines.

If we want to cram n states for what she’s doing and m states for what she’s carrying into a single machine, we need n × m states.
With two machines, it’s just n + m.

We keep our original state machine for what she’s doing and leave it alone. Then we define a
separate state machine for what she’s carrying. Heroine will have two “state” references, one for
each, like:

class Heroine
{
 // Other code...

private:
 HeroineState* state_;
 HeroineState* equipment_;
};

For illustrative purposes, we’re using the full State pattern for her equipment. In practice, since it only has two states, a Boolean flag
would work too.

When the heroine delegates inputs to the states, she hands it to both of them:

void Heroine::handleInput(Input input)
{
 state_->handleInput(*this, input);
 equipment_->handleInput(*this, input);
}

A more full-featured system would probably have a way for one state machine to consume an input so that the other doesn’t receive
it. That would prevent both machines from erroneously trying to respond to the same input.

Each state machine can then respond to inputs, spawn behavior, and change its state independently of
the other machine. When the two sets of states are mostly unrelated, this works well.

In practice, you’ll find a few cases where the states do interact. For example, maybe she can’t fire

while jumping, or maybe she can’t do a dive attack if she’s armed. To handle that, in the code for one
state, you’ll probably just do some crude if tests on the other machine’s state to coordinate them. It’s
not the most elegant solution, but it gets the job done.

Hierarchical State Machines
After fleshing out our heroine’s behavior some more, she’ll likely have a bunch of similar states. For
example, she may have standing, walking, running, and sliding states. In any of those, pressing B
jumps and pressing down ducks.

With a simple state machine implementation, we have to duplicate that code in each of those states. It
would be better if we could implement that once and reuse it across all of the states.

If this was just object-oriented code instead of a state machine, one way to share code across those
states would be using inheritance. We could define a class for an “on ground” state that handles
jumping and ducking. Standing, walking, running, and sliding would then inherit from that and add
their own additional behavior.

This has both good and bad implications. Inheritance is a powerful means of code reuse, but it’s also a very strong coupling between
two chunks of code. It’s a big hammer, so swing it carefully.

It turns out, this is a common structure called a hierarchical state machine. A state can have a
superstate (making itself a substate). When an event comes in, if the substate doesn’t handle it, it
rolls up the chain of superstates. In other words, it works just like overriding inherited methods.

In fact, if we’re using the State pattern to implement our FSM, we can use class inheritance to
implement the hierarchy. Define a base class for the superstate:

class OnGroundState : public HeroineState
{
public:
 virtual void handleInput(Heroine& heroine, Input input)
 {
 if (input == PRESS_B)
 {
 // Jump...
 }
 else if (input == PRESS_DOWN)
 {
 // Duck...
 }
 }
};

And then each substate inherits it:

class DuckingState : public OnGroundState
{
public:
 virtual void handleInput(Heroine& heroine, Input input)
 {
 if (input == RELEASE_DOWN)
 {
 // Stand up...
 }
 else
 {
 // Didn't handle input, so walk up hierarchy.
 OnGroundState::handleInput(heroine, input);

 }
 }
};

This isn’t the only way to implement the hierarchy, of course. If you aren’t using the Gang of Four’s
State pattern, this won’t work. Instead, you can model the current state’s chain of superstates
explicitly using a stack of states instead of a single state in the main class.

The current state is the one on the top of the stack, under that is its immediate superstate, and then that
state’s superstate and so on. When you dish out some state-specific behavior, you start at the top of
the stack and walk down until one of the states handles it. (If none do, you ignore it.)

Pushdown Automata
There’s another common extension to finite state machines that also uses a stack of states.
Confusingly, the stack represents something entirely different, and is used to solve a different
problem.

The problem is that finite state machines have no concept of history. You know what state you are in,
but have no memory of what state you were in. There’s no easy way to go back to a previous state.

Here’s an example: Earlier, we let our fearless heroine arm herself to the teeth. When she fires her
gun, we need a new state that plays the firing animation and spawns the bullet and any visual effects.
So we slap together a FiringState and make all of the states that she can fire from transition into
that when the fire button is pressed.

Since this behavior is duplicated across several states, it may also be a good place to use a hierarchical state machine to reuse that
code.

The tricky part is what state she transitions to after firing. She can pop off a round while standing,
running, jumping, and ducking. When the firing sequence is complete, she should transition back to
what she was doing before.

If we’re sticking with a vanilla FSM, we’ve already forgotten what state she was in. To keep track of
it, we’d have to define a slew of nearly identical states — firing while standing, firing while running,
firing while jumping, and so on — just so that each one can have a hardcoded transition that goes
back to the right state when it’s done.

What we’d really like is a way to store the state she was in before firing and then recall it later.
Again, automata theory is here to help. The relevant data structure is called a pushdown automaton.

Where a finite state machine has a single pointer to a state, a pushdown automaton has a stack of
them. In an FSM, transitioning to a new state replaces the previous one. A pushdown automaton lets
you do that, but it also gives you two additional operations:

1. You can push a new state onto the stack. The “current” state is always the one on top of the
stack, so this transitions to the new state. But it leaves the previous state directly under it on the
stack instead of discarding it.

2. You can pop the topmost state off the stack. That state is discarded, and the state under it
becomes the new current state.

http://en.wikipedia.org/wiki/Pushdown_automaton

This is just what we need for firing. We create a single firing state. When the fire button is pressed
while in any other state, we push the firing state onto the stack. When the firing animation is done, we
pop that state off, and the pushdown automaton automatically transitions us right back to the state we
were in before.

So How Useful Are They?
Even with those common extensions to state machines, they are still pretty limited. The trend these
days in game AI is more toward exciting things like behavior trees and planning systems. If complex
AI is what you’re interested in, all this chapter has done is whet your appetite. You’ll want to read
other books to satisfy it.

This doesn’t mean finite state machines, pushdown automata, and other simple systems aren’t useful.
They’re a good modeling tool for certain kinds of problems. Finite state machines are useful when:

You have an entity whose behavior changes based on some internal state.

That state can be rigidly divided into one of a relatively small number of distinct options.

The entity responds to a series of inputs or events over time.

In games, they are most known for being used in AI, but they are also common in implementations of
user input handling, navigating menu screens, parsing text, network protocols, and other asynchronous
behavior.

http://web.archive.org/web/20140402204854/http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://web.media.mit.edu/~jorkin/goap.html

Sequencing Patterns
Videogames are exciting in large part because they take us somewhere else. For a few minutes (or,
let’s be honest with ourselves, much longer), we become inhabitants of a virtual world. Creating
these worlds is one of the supreme delights of being a game programmer.

One aspect that most of these game worlds feature is time — the artificial world lives and breathes at
its own cadence. As world builders, we must invent time and craft the gears that drive our game’s
great clock.

The patterns in this section are tools for doing just that. A Game Loop is the central axle that the clock
spins on. Objects hear its ticking through Update Methods. We can hide the computer’s sequential
nature behind a facade of snapshots of moments in time using Double Buffering so that the world
appears to update simultaneously.

The Patterns
Double Buffer
Game Loop
Update Method

Double Buffer

Intent
Cause a series of sequential operations to appear instantaneous or simultaneous.

Motivation
In their hearts, computers are sequential beasts. Their power comes from being able to break down
the largest tasks into tiny steps that can be performed one after another. Often, though, our users need
to see things occur in a single instantaneous step or see multiple tasks performed simultaneously.

With threading and multi-core architectures this is becoming less true, but even with several cores, only a few operations are running
concurrently.

A typical example, and one that every game engine must address, is rendering. When the game draws
the world the users see, it does so one piece at a time — the mountains in the distance, the rolling
hills, the trees, each in its turn. If the user watched the view draw incrementally like that, the illusion
of a coherent world would be shattered. The scene must update smoothly and quickly, displaying a
series of complete frames, each appearing instantly.

Double buffering solves this problem, but to understand how, we first need to review how a computer
displays graphics.

How computer graphics work (briefly)

A video display like a computer monitor draws one pixel at a time. It sweeps across each row of
pixels from left to right and then moves down to the next row. When it reaches the bottom right
corner, it scans back up to the top left and starts all over again. It does this so fast — around sixty
times a second — that our eyes can’t see the scanning. To us, it’s a single static field of colored
pixels — an image.

This explanation is, err, “simplified”. If you’re a low-level hardware person and you’re cringing right now, feel free to skip to the next
section. You already know enough to understand the rest of the chapter. If you aren’t that person, my goal here is to give you just
enough context to understand the pattern we’ll discuss later.

You can think of this process like a tiny hose that pipes pixels to the display. Individual colors go into
the back of the hose, and it sprays them out across the display, one bit of color to each pixel in its
turn. So how does the hose know what colors go where?

In most computers, the answer is that it pulls them from a framebuffer. A framebuffer is an array of
pixels in memory, a chunk of RAM where each couple of bytes represents the color of a single pixel.
As the hose sprays across the display, it reads in the color values from this array, one byte at a time.

The specific mapping between byte values and colors is described by the pixel format and the color depth of the system. In most
gaming consoles today, each pixel gets 32 bits: eight each for the red, green, and blue channels, and another eight left over for various
other purposes.

Ultimately, in order to get our game to appear on screen, all we do is write to that array. All of the
crazy advanced graphics algorithms we have boil down to just that: setting byte values in the
framebuffer. But there’s a little problem.

Earlier, I said computers are sequential. If the machine is executing a chunk of our rendering code, we
don’t expect it to be doing anything else at the same time. That’s mostly accurate, but a couple of
things do happen in the middle of our program running. One of those is that the video display will be
reading from the framebuffer constantly while our game runs. This can cause a problem for us.

Let’s say we want a happy face to appear on screen. Our program starts looping through the
framebuffer, coloring pixels. What we don’t realize is that the video driver is pulling from the
framebuffer right as we’re writing to it. As it scans across the pixels we’ve written, our face starts to
appear, but then it outpaces us and moves into pixels we haven’t written yet. The result is tearing, a
hideous visual bug where you see half of something drawn on screen.

We start drawing pixels just as the video driver starts reading from the framebuffer (Fig. 1). The video driver eventually catches up to
the renderer and then races past it to pixels we haven’t written yet (Fig. 2). We finish drawing (Fig. 3), but the driver doesn’t catch
those new pixels.

The result (Fig. 4) is that the user sees half of the drawing. The name “tearing” comes from the fact that it looks like the bottom half
was torn off.

This is why we need this pattern. Our program renders the pixels one at a time, but we need the
display driver to see them all at once — in one frame the face isn’t there, and in the next one it is.
Double buffering solves this. I’ll explain how by analogy.

Act 1, Scene 1

Imagine our users are watching a play produced by ourselves. As scene one ends and scene two
starts, we need to change the stage setting. If we have the stagehands run on after the scene and start
dragging props around, the illusion of a coherent place will be broken. We could dim the lights while
we do that (which, of course, is what real theaters do), but the audience still knows something is
going on. We want there to be no gap in time between scenes.

With a bit of real estate, we come up with this clever solution: we build two stages set up so the
audience can see both. Each has its own set of lights. We’ll call them stage A and stage B. Scene one
is shown on stage A. Meanwhile, stage B is dark as the stagehands are setting up scene two. As soon

as scene one ends, we cut the lights on stage A and bring them up on stage B. The audience looks to
the new stage and scene two begins immediately.

At the same time, our stagehands are over on the now darkened stage A, striking scene one and setting
up scene three. As soon as scene two ends, we switch the lights back to stage A again. We continue
this process for the entire play, using the darkened stage as a work area where we can set up the next
scene. Every scene transition, we just toggle the lights between the two stages. Our audience gets a
continuous performance with no delay between scenes. They never see a stagehand.

Using a half-silvered mirror and some very smart layout, you could actually build this so that the two stages would appear to the
audience in the same place. As soon as the lights switch, they would be looking at a different stage, but they would never have to
change where they look. Building this is left as an exercise for the reader.

Back to the graphics

That is exactly how double buffering works, and this process underlies the rendering system of just
about every game you’ve ever seen. Instead of a single framebuffer, we have two. One of them
represents the current frame, stage A in our analogy. It’s the one the video hardware is reading from.
The GPU can scan through it as much as it wants whenever it wants.

Not all games and consoles do this, though. Older and simpler consoles where memory is limited carefully sync their drawing to the
video refresh instead. It’s tricky.

Meanwhile, our rendering code is writing to the other framebuffer. This is our darkened stage B.
When our rendering code is done drawing the scene, it switches the lights by swapping the buffers.
This tells the video hardware to start reading from the second buffer now instead of the first one. As
long as it times that switch at the end of a refresh, we won’t get any tearing, and the entire scene will
appear all at once.

Meanwhile, the old framebuffer is now available for use. We start rendering the next frame onto it.
Voilà!

The Pattern
A buffered class encapsulates a buffer: a piece of state that can be modified. This buffer is edited
incrementally, but we want all outside code to see the edit as a single atomic change. To do this, the
class keeps two instances of the buffer: a next buffer and a current buffer.

When information is read from a buffer, it is always from the current buffer. When information is
written to a buffer, it occurs on the next buffer. When the changes are complete, a swap operation
swaps the next and current buffers instantly so that the new buffer is now publicly visible. The old
current buffer is now available to be reused as the new next buffer.

When to Use It
This pattern is one of those ones where you’ll know when you need it. If you have a system that lacks
double buffering, it will probably look visibly wrong (tearing, etc.) or will behave incorrectly. But
saying, “you’ll know when you need it” doesn’t give you much to go on. More specifically, this
pattern is appropriate when all of these are true:

We have some state that is being modified incrementally.

That same state may be accessed in the middle of modification.

We want to prevent the code that’s accessing the state from seeing the work in progress.

We want to be able to read the state and we don’t want to have to wait while it’s being written.

Keep in Mind
Unlike larger architectural patterns, double buffering exists at a lower implementation level. Because
of this, it has fewer consequences for the rest of the codebase — most of the game won’t even be
aware of the difference. There are a couple of caveats, though.

The swap itself takes time

Double-buffering requires a swap step once the state is done being modified. That operation must be
atomic — no code can access either state while they are being swapped. Often, this is as quick as
assigning a pointer, but if it takes longer to swap than it does to modify the state to begin with, then
we haven’t helped ourselves at all.

We have to have two buffers

The other consequence of this pattern is increased memory usage. As its name implies, the pattern
requires you to keep two copies of your state in memory at all times. On memory-constrained devices,
this can be a heavy price to pay. If you can’t afford two buffers, you may have to look into other ways
to ensure your state isn’t being accessed during modification.

Sample Code
Now that we’ve got the theory, let’s see how it works in practice. We’ll write a very bare-bones
graphics system that lets us draw pixels on a framebuffer. In most consoles and PCs, the video driver
provides this low-level part of the graphics system, but implementing it by hand here will let us see
what’s going on. First up is the buffer itself:

class Framebuffer
{
public:
 Framebuffer() { clear(); }

 void clear()
 {
 for (int i = 0; i < WIDTH * HEIGHT; i++)
 {
 pixels_[i] = WHITE;
 }
 }

 void draw(int x, int y)
 {
 pixels_[(WIDTH * y) + x] = BLACK;
 }

 const char* getPixels()
 {
 return pixels_;
 }

private:
 static const int WIDTH = 160;
 static const int HEIGHT = 120;

 char pixels_[WIDTH * HEIGHT];
};

It has basic operations for clearing the entire buffer to a default color and setting the color of an
individual pixel. It also has a function, getPixels(), to expose the raw array of memory holding the
pixel data. We won’t see this in the example, but the video driver will call that function frequently to
stream memory from the buffer onto the screen.

We wrap this raw buffer in a Scene class. It’s job here is to render something by making a bunch of
draw() calls on its buffer:

class Scene
{
public:
 void draw()
 {
 buffer_.clear();

 buffer_.draw(1, 1);
 buffer_.draw(4, 1);
 buffer_.draw(1, 3);
 buffer_.draw(2, 4);
 buffer_.draw(3, 4);
 buffer_.draw(4, 3);
 }

 Framebuffer& getBuffer() { return buffer_; }

private:
 Framebuffer buffer_;
};

Specifically, it draws this artistic masterpiece:

Every frame, the game tells the scene to draw. The scene clears the buffer and then draws a bunch of
pixels, one at a time. It also provides access to the internal buffer through getBuffer() so that the
video driver can get to it.

This seems pretty straightforward, but if we leave it like this, we’ll run into problems. The trouble is
that the video driver can call getPixels() on the buffer at any point in time, even here:

buffer_.draw(1, 1);
buffer_.draw(4, 1);
// <- Video driver reads pixels here!
buffer_.draw(1, 3);
buffer_.draw(2, 4);
buffer_.draw(3, 4);
buffer_.draw(4, 3);

When that happens, the user will see the eyes of the face, but the mouth will disappear for a single
frame. In the next frame, it could get interrupted at some other point. The end result is horribly
flickering graphics. We’ll fix this with double buffering:

class Scene
{
public:
 Scene()
 : current_(&buffers_[0]),
 next_(&buffers_[1])
 {}

 void draw()

 {
 next_->clear();

 next_->draw(1, 1);
 // ...
 next_->draw(4, 3);

 swap();
 }

 Framebuffer& getBuffer() { return *current_; }

private:
 void swap()
 {
 // Just switch the pointers.
 Framebuffer* temp = current_;
 current_ = next_;
 next_ = temp;
 }

 Framebuffer buffers_[2];
 Framebuffer* current_;
 Framebuffer* next_;
};

Now Scene has two buffers, stored in the buffers_ array. We don’t directly reference them from the
array. Instead, there are two members, next_ and current_, that point into the array. When we draw,
we draw onto the next buffer, referenced by next_. When the video driver needs to get the pixels, it
always accesses the other buffer through current_.

This way, the video driver never sees the buffer that we’re working on. The only remaining piece of
the puzzle is the call to swap() when the scene is done drawing the frame. That swaps the two buffers
by simply switching the next_ and current_ references. The next time the video driver calls
getBuffer(), it will get the new buffer we just finished drawing and put our recently drawn buffer
on screen. No more tearing or unsightly glitches.

Not just for graphics

The core problem that double buffering solves is state being accessed while it’s being modified.
There are two common causes of this. We’ve covered the first one with our graphics example — the
state is directly accessed from code on another thread or interrupt.

There is another equally common cause, though: when the code doing the modification is accessing
the same state that it’s modifying. This can manifest in a variety of places, especially physics and AI
where you have entities interacting with each other. Double-buffering is often helpful here too.

Artificial unintelligence

Let’s say we’re building the behavioral system for, of all things, a game based on slapstick comedy.
The game has a stage containing a bunch of actors that run around and get up to various hijinks and
shenanigans. Here’s our base actor:

class Actor
{
public:
 Actor() : slapped_(false) {}

 virtual ~Actor() {}
 virtual void update() = 0;

 void reset() { slapped_ = false; }
 void slap() { slapped_ = true; }
 bool wasSlapped() { return slapped_; }

private:
 bool slapped_;
};

Every frame, the game is responsible for calling update() on the actor so that it has a chance to do
some processing. Critically, from the user’s perspective, all actors should appear to update
simultaneously.

This is an example of the Update Method pattern.

Actors can also interact with each other, if by “interacting”, we mean “they can slap each other
around”. When updating, the actor can call slap() on another actor to slap it and call wasSlapped()
to determine if it has been slapped.

The actors need a stage where they can interact, so let’s build that:

class Stage
{
public:
 void add(Actor* actor, int index)
 {
 actors_[index] = actor;
 }

 void update()
 {
 for (int i = 0; i < NUM_ACTORS; i++)
 {
 actors_[i]->update();
 actors_[i]->reset();
 }
 }

private:
 static const int NUM_ACTORS = 3;

 Actor* actors_[NUM_ACTORS];
};

Stage lets us add actors, and provides a single update() call that updates each actor. To the user,
actors appear to move simultaneously, but internally, they are updated one at a time.

The only other point to note is that each actor’s “slapped” state is cleared immediately after updating.
This is so that an actor only responds to a given slap once.

To get things going, let’s define a concrete actor subclass. Our comedian here is pretty simple. He
faces a single actor. Whenever he gets slapped — by anyone — he responds by slapping the actor he

faces.

class Comedian : public Actor
{
public:
 void face(Actor* actor) { facing_ = actor; }

 virtual void update()
 {
 if (wasSlapped()) facing_->slap();
 }

private:
 Actor* facing_;
};

Now, let’s throw some comedians on a stage and see what happens. We’ll set up three comedians,
each facing the next. The last one will face the first, in a big circle:

Stage stage;

Comedian* harry = new Comedian();
Comedian* baldy = new Comedian();
Comedian* chump = new Comedian();

harry->face(baldy);
baldy->face(chump);
chump->face(harry);

stage.add(harry, 0);
stage.add(baldy, 1);
stage.add(chump, 2);

The resulting stage is set up as shown in the following image. The arrows show who the actors are
facing, and the numbers show their index in the stage’s array.

We’ll slap Harry to get things going and see what happens when we start processing:

harry->slap();

stage.update();

Remember that the update() function in Stage updates each actor in turn, so if we step through the

code, we’ll find that the following occurs:

Stage updates actor 0 (Harry)
 Harry was slapped, so he slaps Baldy
Stage updates actor 1 (Baldy)
 Baldy was slapped, so he slaps Chump
Stage updates actor 2 (Chump)
 Chump was slapped, so he slaps Harry
Stage update ends

In a single frame, our initial slap on Harry has propagated through all of the comedians. Now, to mix
things up a bit, let’s say we reorder the comedians within the stage’s array but leave them facing each
other the same way.

We’ll leave the rest of the stage setup alone, but we’ll replace the chunk of code where we add the
actors to the stage with this:

stage.add(harry, 2);
stage.add(baldy, 1);
stage.add(chump, 0);

Let’s see what happens when we run our experiment again:

Stage updates actor 0 (Chump)
 Chump was not slapped, so he does nothing
Stage updates actor 1 (Baldy)
 Baldy was not slapped, so he does nothing
Stage updates actor 2 (Harry)
 Harry was slapped, so he slaps Baldy
Stage update ends

Uh, oh. Totally different. The problem is straightforward. When we update the actors, we modify
their “slapped” states, the exact same state we also read during the update. Because of this, changes
to that state early in the update affect later parts of that same update step.

If you continue to update the stage, you’ll see the slaps gradually cascade through the actors, one per frame. In the first frame, Harry
slaps Baldy. In the next frame, Baldy slaps Chump, and so on.

The ultimate result is that an actor may respond to being slapped in either the same frame as the slap

or in the next frame based entirely on how the two actors happen to be ordered on the stage. This
violates our requirement that actors need to appear to run in parallel — the order that they update
within a single frame shouldn’t matter.

Buffered slaps

Fortunately, our Double Buffer pattern can help. This time, instead of having two copies of a
monolithic “buffer” object, we’ll be buffering at a much finer granularity: each actor’s “slapped”
state:

class Actor
{
public:
 Actor() : currentSlapped_(false) {}

 virtual ~Actor() {}
 virtual void update() = 0;

 void swap()
 {
 // Swap the buffer.
 currentSlapped_ = nextSlapped_;

 // Clear the new "next" buffer.
 nextSlapped_ = false;
 }

 void slap() { nextSlapped_ = true; }
 bool wasSlapped() { return currentSlapped_; }

private:
 bool currentSlapped_;
 bool nextSlapped_;
};

Instead of a single slapped_ state, each actor now has two. Just like the previous graphics example,
the current state is used for reading, and the next state is used for writing.

The reset() function has been replaced with swap(). Now, right before clearing the swap state, it
copies the next state into the current one, making it the new current state. This also requires a small
change in Stage:

void Stage::update()
{
 for (int i = 0; i < NUM_ACTORS; i++)
 {
 actors_[i]->update();
 }

 for (int i = 0; i < NUM_ACTORS; i++)
 {
 actors_[i]->swap();
 }
}

The update() function now updates all of the actors and then swaps all of their states. The end result
of this is that an actor will only see a slap in the frame after it was actually slapped. This way, the

actors will behave the same no matter their order in the stage’s array. As far as the user or any
outside code can tell, all of the actors update simultaneously within a frame.

Design Decisions
Double Buffer is pretty straightforward, and the examples we’ve seen so far cover most of the
variations you’re likely to encounter. There are two main decisions that come up when implementing
this pattern.

How are the buffers swapped?

The swap operation is the most critical step of the process since we must lock out all reading and
modification of both buffers while it’s occurring. To get the best performance, we want this to happen
as quickly as possible.

Swap pointers or references to the buffer:

This is how our graphics example works, and it’s the most common solution for double-
buffering graphics.

It’s fast. Regardless of how big the buffer is, the swap is simply a couple of pointer
assignments. It’s hard to beat that for speed and simplicity.

Outside code cannot store persistent pointers to the buffer. This is the main limitation.
Since we don’t actually move the data, what we’re essentially doing is periodically telling
the rest of the codebase to look somewhere else for the buffer, like in our original stage
analogy. This means that the rest of the codebase can’t store pointers directly to data within
the buffer — they may be pointing at the wrong one a moment later.

This can be particularly troublesome on a system where the video driver expects the
framebuffer to always be at a fixed location in memory. In that case, we won’t be able to
use this option.

Existing data on the buffer will be from two frames ago, not the last frame. Successive
frames are drawn on alternating buffers with no data copied between them, like so:

Frame 1 drawn on buffer A
Frame 2 drawn on buffer B
Frame 3 drawn on buffer A
...

You’ll note that when we go to draw the third frame, the data already on the buffer is from
frame one, not the more recent second frame. In most cases, this isn’t an issue — we
usually clear the whole buffer right before drawing. But if we intend to reuse some of the
existing data on the buffer, it’s important to take into account that that data will be a frame
older than we might expect.

One classic use of old framebuffer data is simulating motion blur. The current frame is blended with a bit of the
previously rendered frame to make a resulting image that looks more like what a real camera captures.

Copy the data between the buffers:

If we can’t repoint users to the other buffer, the only other option is to actually copy the data
from the next frame to the current frame. This is how our slapstick comedians work. In that case,
we chose this method because the state — a single Boolean flag — doesn’t take any longer to
copy than a pointer to the buffer would.

Data on the next buffer is only a single frame old. This is the nice thing about copying the
data as opposed to ping-ponging back and forth between the two buffers. If we need access
to previous buffer data, this will give us more up-to-date data to work with.

Swapping can take more time. This, of course, is the big negative point. Our swap
operation now means copying the entire buffer in memory. If the buffer is large, like an
entire framebuffer, it can take a significant chunk of time to do this. Since nothing can read
or write to either buffer while this is happening, that’s a big limitation.

What is the granularity of the buffer?

The other question is how the buffer itself is organized — is it a single monolithic chunk of data or
distributed among a collection of objects? Our graphics example uses the former, and the actors use
the latter.

Most of the time, the nature of what you’re buffering will lead to the answer, but there’s some
flexibility. For example, our actors all could have stored their messages in a single message block
that they all reference into by their index.

If the buffer is monolithic:

Swapping is simpler. Since there is only one pair of buffers, a single swap does it. If you
can swap by changing pointers, then you can swap the entire buffer, regardless of size, with
just a couple of assignments.

If many objects have a piece of data:

Swapping is slower. In order to swap, we need to iterate through the entire collection of
objects and tell each one to swap.

In our comedian example, that was OK since we needed to clear the next slap state anyway
— every piece of buffered state needed to be touched each frame. If we don’t need to
otherwise touch the old buffer, there’s a simple optimization we can do to get the same
performance of a monolithic buffer while distributing the buffer across multiple objects.

The idea is to get the “current” and “next” pointer concept and apply it to each of our
objects by turning them into object-relative offsets. Like so:

class Actor

{
public:
 static void init() { current_ = 0; }
 static void swap() { current_ = next(); }

 void slap() { slapped_[next()] = true; }
 bool wasSlapped() { return slapped_[current_]; }

private:
 static int current_;
 static int next() { return 1 - current_; }

 bool slapped_[2];
};

Actors access their current slap state by using current_ to index into the state array. The
next state is always the other index in the array, so we can calculate that with next().
Swapping the state simply alternates the current_ index. The clever bit is that swap() is
now a static function — it only needs to be called once, and every actor’s state will be
swapped.

See Also
You can find the Double Buffer pattern in use in almost every graphics API out there. For
example, OpenGL has swapBuffers(), Direct3D has “swap chains”, and Microsoft’s XNA
framework swaps the framebuffers within its endDraw() method.

Game Loop

Intent
Decouple the progression of game time from user input and processor speed.

Motivation
If there is one pattern this book couldn’t live without, this is it. Game loops are the quintessential
example of a “game programming pattern”. Almost every game has one, no two are exactly alike, and
relatively few programs outside of games use them.

To see how they’re useful, let’s take a quick trip down memory lane. In the olden days of computer
programming when everyone had beards, programs worked like your dishwasher. You dumped a load
of code in, pushed a button, waited, and got results out. Done. These were batch mode programs —
once the work was done, the program stopped.

Ada Lovelace and Rear Admiral Grace Hopper had honorary beards.

You still see these today, though thankfully we don’t have to write them on punch cards anymore.
Shell scripts, command line programs, and even the little Python script that turns a pile of Markdown
into this book are all batch mode programs.

Interview with a CPU

Eventually, programmers realized having to drop off a batch of code at the computing office and come
back a few hours later for the results was a terribly slow way to get the bugs out of a program. They
wanted immediate feedback. Interactive programs were born. Some of the first interactive programs
were games:

YOU ARE STANDING AT THE END OF A ROAD BEFORE A SMALL BRICK
BUILDING . AROUND YOU IS A FOREST. A SMALL
STREAM FLOWS OUT OF THE BUILDING AND DOWN A GULLY.

> GO IN
YOU ARE INSIDE A BUILDING, A WELL HOUSE FOR A LARGE SPRING.

This is Colossal Cave Adventure, the first adventure game.

You could have a live conversation with the program. It waited for your input, then it would respond
to you. You would reply back, taking turns just like you learned to do in kindergarten. When it was
your turn, it sat there doing nothing. Something like:

while (true)
{
 char* command = readCommand();
 handleCommand(command);
}

This loops forever, so there’s no way to quit the game. A real game would do something like while (!done) and set done to exit. I’ve
omitted that to keep things simple.

Event loops

http://en.wikipedia.org/wiki/Colossal_Cave_Adventure

Modern graphic UI applications are surprisingly similar to old adventure games once you shuck their
skin off. Your word processor usually just sits there doing nothing until you press a key or click
something:

while (true)
{
 Event* event = waitForEvent();
 dispatchEvent(event);
}

The main difference is that instead of text commands, the program is waiting for user input events
— mouse clicks and key presses. It still works basically like the old text adventures where the
program blocks waiting for user input, which is a problem.

Unlike most other software, games keep moving even when the user isn’t providing input. If you sit
staring at the screen, the game doesn’t freeze. Animations keep animating. Visual effects dance and
sparkle. If you’re unlucky, that monster keeps chomping on your hero.

Most event loops do have “idle” events so you can intermittently do stuff without user input. That’s good enough for a blinking cursor
or a progress bar, but too rudimentary for games.

This is the first key part of a real game loop: it processes user input, but doesn’t wait for it. The
loop always keeps spinning:

while (true)
{
 processInput();
 update();
 render();
}

We’ll refine this later, but the basic pieces are here. processInput() handles any user input that has
happened since the last call. Then, update() advances the game simulation one step. It runs AI and
physics (usually in that order). Finally, render() draws the game so the player can see what
happened.

As you might guess from the name, update() is a good place to use the Update Method pattern.

A world out of time

If this loop isn’t blocking on input, that leads to the obvious question: how fast does it spin? Each turn
through the game loop advances the state of the game by some amount. From the perspective of an
inhabitant of the game world, the hand of their clock has ticked forward.

The common terms for one crank of the game loop are “tick” and “frame”.

Meanwhile, the player’s actual clock is ticking. If we measure how quickly the game loop cycles in
terms of real time, we get the game’s “frames per second”. If the game loop cycles quickly, the FPS is
high and the game moves smoothly and quickly. If it’s slow, the game jerks along like a stop motion
movie.

With the crude loop we have now where it just cycles as quickly as it can, two factors determine the
frame rate. The first is how much work it has to do each frame. Complex physics, a bunch of game
objects, and lots of graphic detail all will keep your CPU and GPU busy, and it will take longer to
complete a frame.

The second is the speed of the underlying platform. Faster chips churn through more code in the
same amount of time. Multiple cores, GPUs, dedicated audio hardware, and the OS’s scheduler all
affect how much you get done in one tick.

Seconds per second

In early video games, that second factor was fixed. If you wrote a game for the NES or Apple IIe, you
knew exactly what CPU your game was running on and you could (and did) code specifically for that.
All you had to worry about was how much work you did each tick.

Older games were carefully coded to do just enough work each frame so that the game ran at the
speed the developers wanted. But if you tried to play that same game on a faster or slower machine,
then the game itself would speed up or slow down.

This is why old PCs used to have “turbo” buttons. New PCs were faster and couldn’t play old games because the games would run
too fast. Turning the turbo button off would slow the machine down and make old games playable.

These days, though, few developers have the luxury of knowing exactly what hardware their game
will run on. Instead, our games must intelligently adapt to a variety of devices.

This is the other key job of a game loop: it runs the game at a consistent speed despite differences
in the underlying hardware.

http://en.wikipedia.org/wiki/Turbo_button

The Pattern
A game loop runs continuously during gameplay. Each turn of the loop, it processes user input
without blocking, updates the game state, and renders the game. It tracks the passage of time to
control the rate of gameplay.

When to Use It
Using the wrong pattern can be worse than using no pattern at all, so this section is normally here to
caution against over-enthusiasm. The goal of design patterns isn’t to cram as many into your codebase
as you can.

But this pattern is a bit different. I can say with pretty good confidence that you will use this pattern. If
you’re using a game engine, you won’t write it yourself, but it’s still there.

For me, this is the difference between an “engine” and a “library”. With libraries, you own the main game loop and call into the library.
An engine owns the loop and calls into your code.

You might think you won’t need this if you’re making a turn-based game. But even there, though the
game state won’t advance until the user takes their turn, the visual and audible states of the game
usually do. Animation and music keep running even when the game is “waiting” for you to take your
turn.

Keep in Mind
The loop we’re talking about here is some of the most important code in your game. They say a
program spends 90% of its time in 10% of the code. Your game loop will be firmly in that 10%. Take
care with this code, and be mindful of its efficiency.

Made up statistics like this are why “real” engineers like mechanical and electrical engineers don’t take us seriously.

You may need to coordinate with the platform’s event loop

If you’re building your game on top of an OS or platform that has a graphic UI and an event loop built
in, then you have two application loops in play. They’ll need to play nice together.

Sometimes, you can take control and make your loop the only one. For example, if you’re writing a
game against the venerable Windows API, your main() can just have a game loop. Inside, you can
call PeekMessage() to handle and dispatch events from the OS. Unlike GetMessage(),
PeekMessage() doesn’t block waiting for user input, so your game loop will keep cranking.

Other platforms don’t let you opt out of the event loop so easily. If you’re targeting a web browser,
the event loop is deeply built into browser’s execution model. There, the event loop will run the
show, and you’ll use it as your game loop too. You’ll call something like
requestAnimationFrame() and it will call back into your code to keep the game running.

Sample Code
For such a long introduction, the code for a game loop is actually pretty straightforward. We’ll walk
through a couple of variations and go over their good and bad points.

The game loop drives AI, rendering, and other game systems, but those aren’t the point of the pattern
itself, so we’ll just call into fictitious methods here. Actually implementing render(), update() and
others is left as a (challenging!) exercise for the reader.

Run, run as fast as you can

We’ve already seen the simplest possible game loop:

while (true)
{
 processInput();
 update();
 render();
}

The problem with it is you have no control over how fast the game runs. On a fast machine, that loop
will spin so fast users won’t be able to see what’s going on. On a slow machine, the game will crawl.
If you have a part of the game that’s content-heavy or does more AI or physics, the game will actually
play slower there.

Take a little nap

The first variation we’ll look at adds a simple fix. Say you want your game to run at 60 FPS. That
gives you about 16 milliseconds per frame. As long as you can reliably do all of your game
processing and rendering in less than that time, you can run at a steady frame rate. All you do is
process the frame and then wait until it’s time for the next one, like so:

The code looks a bit like this:

1000 ms / FPS = ms per frame.

while (true)
{
 double start = getCurrentTime();
 processInput();
 update();
 render();

 sleep(start + MS_PER_FRAME - getCurrentTime());
}

The sleep() here makes sure the game doesn’t run too fast if it processes a frame quickly. It doesn’t
help if your game runs too slowly. If it takes longer than 16ms to update and render the frame, your
sleep time goes negative. If we had computers that could travel back in time, lots of things would be
easier, but we don’t.

Instead, the game slows down. You can work around this by doing less work each frame — cut down
on the graphics and razzle dazzle or dumb down the AI. But that impacts the quality of gameplay for
all users, even ones on fast machines.

One small step, one giant step

Let’s try something a bit more sophisticated. The problem we have basically boils down to:

1. Each update advances game time by a certain amount.

2. It takes a certain amount of real time to process that.

If step two takes longer than step one, the game slows down. If it takes more than 16 ms of processing
to advance game time by 16ms, it can’t possibly keep up. But if we can advance the game by more
than 16ms of game time in a single step, then we can update the game less frequently and still keep up.

The idea then is to choose a time step to advance based on how much real time passed since the last
frame. The longer the frame takes, the bigger steps the game takes. It always keeps up with real time
because it will take bigger and bigger steps to get there. They call this a variable or fluid time step. It
looks like:

double lastTime = getCurrentTime();
while (true)
{
 double current = getCurrentTime();
 double elapsed = current - lastTime;
 processInput();
 update(elapsed);
 render();
 lastTime = current;
}

Each frame, we determine how much real time passed since the last game update (elapsed). When

we update the game state, we pass that in. The engine is then responsible for advancing the game
world forward by that amount of time.

Say you’ve got a bullet shooting across the screen. With a fixed time step, in each frame, you’ll move
it according to its velocity. With a variable time step, you scale that velocity by the elapsed time. As
the time step gets bigger, the bullet moves farther in each frame. That bullet will get across the screen
in the same amount of real time whether it’s twenty small fast steps or four big slow ones. This looks
like a winner:

The game plays at a consistent rate on different hardware.

Players with faster machines are rewarded with smoother gameplay.

But, alas, there’s a serious problem lurking ahead: we’ve made the game non-deterministic and
unstable. Here’s one example of the trap we’ve set for ourselves:

“Deterministic” means that every time you run the program, if you give it the same inputs, you get the exact same outputs back. As
you can imagine, it’s much easier to track down bugs in deterministic programs — find the inputs that caused the bug the first time,
and you can cause it every time.

Computers are naturally deterministic; they follow programs mechanically. Non-determinism appears when the messy real world
creeps in. For example, networking, the system clock, and thread scheduling all rely on bits of the external world outside of the
program’s control.

Say we’ve got a two-player networked game and Fred has some beast of a gaming machine while
George is using his grandmother’s antique PC. That aforementioned bullet is flying across both of
their screens. On Fred’s machine, the game is running super fast, so each time step is tiny. We cram,
like, 50 frames in the second it takes the bullet to cross the screen. Poor George’s machine can only
fit in about five frames.

This means that on Fred’s machine, the physics engine updates the bullet’s position 50 times, but
George’s only does it five times. Most games use floating point numbers, and those are subject to
rounding error. Each time you add two floating point numbers, the answer you get back can be a bit
off. Fred’s machine is doing ten times as many operations, so he’ll accumulate a bigger error than
George. The same bullet will end up in different places on their machines.

This is just one nasty problem a variable time step can cause, but there are more. In order to run in
real time, game physics engines are approximations of the real laws of mechanics. To keep those
approximations from blowing up, damping is applied. That damping is carefully tuned to a certain
time step. Vary that, and the physics gets unstable.

“Blowing up” is literal here. When a physics engine flakes out, objects can get completely wrong velocities and launch themselves into
the air.

This instability is bad enough that this example is only here as a cautionary tale and to lead us to
something better…

Play catch up

One part of the engine that usually isn’t affected by a variable time step is rendering. Since the
rendering engine captures an instant in time, it doesn’t care how much time advanced since the last
one. It renders things wherever they happen to be right then.

This is more or less true. Things like motion blur can be affected by time step, but if they’re a bit off, the player doesn’t usually notice.

We can use this fact to our advantage. We’ll update the game using a fixed time step because that
makes everything simpler and more stable for physics and AI. But we’ll allow flexibility in when we
render in order to free up some processor time.

It goes like this: A certain amount of real time has elapsed since the last turn of the game loop. This is
how much game time we need to simulate for the game’s “now” to catch up with the player’s. We do
that using a series of fixed time steps. The code looks a bit like:

double previous = getCurrentTime();
double lag = 0.0;
while (true)
{
 double current = getCurrentTime();
 double elapsed = current - previous;
 previous = current;
 lag += elapsed;

 processInput();

 while (lag >= MS_PER_UPDATE)
 {
 update();
 lag -= MS_PER_UPDATE;
 }

 render();
}

There’s a few pieces here. At the beginning of each frame, we update lag based on how much real
time passed. This measures how far the game’s clock is behind compared to the real world. We then
have an inner loop to update the game, one fixed step at a time, until it’s caught up. Once we’re caught
up, we render and start over again. You can visualize it sort of like this:

Note that the time step here isn’t the visible frame rate anymore. MS_PER_UPDATE is just the
granularity we use to update the game. The shorter this step is, the more processing time it takes to
catch up to real time. The longer it is, the choppier the gameplay is. Ideally, you want it pretty short,
often faster than 60 FPS, so that the game simulates with high fidelity on fast machines.

But be careful not to make it too short. You need to make sure the time step is greater than the time it
takes to process an update(), even on the slowest hardware. Otherwise, your game simply can’t
catch up.

I left it out here, but you can safeguard this by having the inner update loop bail after a maximum number of iterations. The game will
slow down then, but that’s better than locking up completely.

Fortunately, we’ve bought ourselves some breathing room here. The trick is that we’ve yanked
rendering out of the update loop. That frees up a bunch of CPU time. The end result is the game
simulates at a constant rate using safe fixed time steps across a range of hardware. It’s just that the
player’s visible window into the game gets choppier on a slower machine.

Stuck in the middle

There’s one issue we’re left with, and that’s residual lag. We update the game at a fixed time step, but
we render at arbitrary points in time. This means that from the user’s perspective, the game will often
display at a point in time between two updates.

Here’s a timeline:

As you can see, we update at a nice tight, fixed interval. Meanwhile, we render whenever we can. It’s
less frequent than updating, and it isn’t steady either. Both of those are OK. The lame part is that we
don’t always render right at the point of updating. Look at the third render time. It’s right between two
updates:

Imagine a bullet is flying across the screen. On the first update, it’s on the left side. The second
update moves it to the right side. The game is rendered at a point in time between those two updates,
so the user expects to see that bullet in the center of the screen. With our current implementation, it
will still be on the left side. This means motion looks jagged or stuttery.

Conveniently, we actually know exactly how far between update frames we are when we render: it’s
stored in lag. We bail out of the update loop when it’s less than the update time step, not when it’s
zero. That leftover amount? That’s how far into the next frame we are.

When we go to render, we’ll pass that in:

render(lag / MS_PER_UPDATE);

We divide by MS_PER_UPDATE here to normalize the value. The value passed to render() will vary from 0 (right at the previous
frame) to just under 1.0 (right at the next frame), regardless of the update time step. This way, the renderer doesn’t have to worry
about the frame rate. It just deals in values from 0 to 1.

The renderer knows each game object and its current velocity. Say that bullet is 20 pixels from the
left side of the screen and is moving right 400 pixels per frame. If we are halfway between frames,
then we’ll end up passing 0.5 to render(). So it draws the bullet half a frame ahead, at 220 pixels.
Ta-da, smooth motion.

Of course, it may turn out that that extrapolation is wrong. When we calculate the next frame, we may
discover the bullet hit an obstacle or slowed down or something. We rendered its position
interpolated between where it was on the last frame and where we think it will be on the next frame.
But we don’t know that until we’ve actually done the full update with physics and AI.

So the extrapolation is a bit of a guess and sometimes ends up wrong. Fortunately, though, those kinds
of corrections usually aren’t noticeable. At least, they’re less noticeable than the stuttering you get if
you don’t extrapolate at all.

Design Decisions
Despite the length of this chapter, I’ve left out more than I’ve included. Once you throw in things like
synchronizing with the display’s refresh rate, multithreading, and GPUs, a real game loop can get
pretty hairy. At a high level, though, here are a few questions you’ll likely answer:

Do you own the game loop, or does the platform?

This is less a choice you make and more one that’s made for you. If you’re making a game that runs in
a web browser, you pretty much can’t write your own classic game loop. The browser’s event-based
nature precludes it. Likewise, if you’re using an existing game engine, you will probably rely on its
game loop instead of rolling your own.

Use the platform’s event loop:

It’s simple. You don’t have to worry about writing and optimizing the core loop of the
game.

It plays nice with the platform. You don’t have to worry about explicitly giving the host
time to process its own events, caching events, or otherwise managing the impedance
mismatch between the platform’s input model and yours.

You lose control over timing. The platform will call your code as it sees fit. If that’s not as
frequently or as smoothly as you’d like, too bad. Worse, most application event loops
weren’t designed with games in mind and usually are slow and choppy.

Use a game engine’s loop:

You don’t have to write it. Writing a game loop can get pretty tricky. Since that core code
gets executed every frame, minor bugs or performance problems can have a large impact on
your game. A tight game loop is one reason to consider using an existing engine.

You don’t get to write it. Of course, the flip side to that coin is the loss of control if you do
have needs that aren’t a perfect fit for the engine.

Write it yourself:

Total control. You can do whatever you want with it. You can design it specifically for the
needs of your game.

You have to interface with the platform. Application frameworks and operating systems
usually expect to have a slice of time to process events and do other work. If you own your
app’s core loop, it won’t get any. You’ll have to explicitly hand off control periodically to
make sure the framework doesn’t hang or get confused.

How do you manage power consumption?

This wasn’t an issue five years ago. Games ran on things plugged into walls or on dedicated handheld
devices. But with the advent of smartphones, laptops, and mobile gaming, the odds are good that you
do care about this now. A game that runs beautifully but turns players’ phones into space heaters
before running out of juice thirty minutes later is not a game that makes people happy.

Now, you may need to think not only about making your game look great, but also use as little CPU as
possible. There will likely be an upper bound to performance where you let the CPU sleep if you’ve
done all the work you need to do in a frame.

Run as fast as it can:

This is what you’re likely to do for PC games (though even those are increasingly being played
on laptops). Your game loop will never explicitly tell the OS to sleep. Instead, any spare cycles
will be spent cranking up the FPS or graphic fidelity.

This gives you the best possible gameplay experience but, it will use as much power as it can. If
the player is on a laptop, they’ll have a nice lap warmer.

Clamp the frame rate:

Mobile games are often more focused on the quality of gameplay than they are on maximizing the
detail of the graphics. Many of these games will set an upper limit on the frame rate (usually 30
or 60 FPS). If the game loop is done processing before that slice of time is spent, it will just
sleep for the rest.

This gives the player a “good enough” experience and then goes easy on their battery beyond
that.

How do you control gameplay speed?

A game loop has two key pieces: non-blocking user input and adapting to the passage of time. Input is
straightforward. The magic is in how you deal with time. There are a near-infinite number of
platforms that games can run on, and any single game may run on quite a few. How it accommodates
that variation is key.

Game-making seems to be part of human nature, because every time we’ve built a machine that can do computing, one of the first
things we’ve done is made games on it. The PDP-1 was a 2 kHz machine with only 4,096 words of memory, yet Steve Russell and
friends managed to create Spacewar! on it.

Fixed time step with no synchronization:

This was our first sample code. You just run the game loop as fast as you can.

It’s simple. This is its main (well, only) virtue.

Game speed is directly affected by hardware and game complexity. And its main vice is
that if there’s any variation, it will directly affect the game speed. It’s the fixie of game
loops.

Fixed time step with synchronization:

The next step up on the complexity ladder is running the game at a fixed time step but adding a
delay or synchronization point at the end of the loop to keep the game from running too fast.

Still quite simple. It’s only one line of code more than the probably-too-simple-to-actually-
work example. In most game loops, you will likely do synchronization anyway. You will
probably double buffer your graphics and synchronize the buffer flip to the refresh rate of
the display.

It’s power-friendly. This is a surprisingly important consideration for mobile games. You
don’t want to kill the user’s battery unnecessarily. By simply sleeping for a few
milliseconds instead of trying to cram ever more processing into each tick, you save power.

The game doesn’t play too fast. This fixes half of the speed concerns of a fixed loop.

The game can play too slowly. If it takes too long to update and render a game frame,
playback will slow down. Because this style doesn’t separate updating from rendering, it’s
likely to hit this sooner than more advanced options. Instead of just dropping rendering
frames to catch up, gameplay will slow down.

Variable time step:

I’ll put this in here as an option in the solution space with the caveat that most game developers I
know recommend against it. It’s good to remember why it’s a bad idea, though.

It adapts to playing both too slowly and too fast. If the game can’t keep up with real time,
it will just take larger and larger time steps until it does.

It makes gameplay non-deterministic and unstable. And this is the real problem, of
course. Physics and networking in particular become much harder with a variable time
step.

Fixed update time step, variable rendering:

The last option we covered in the sample code is the most complex, but also the most adaptable.
It updates with a fixed time step, but it can drop rendering frames if it needs to to catch up to the
player’s clock.

It adapts to playing both too slowly and too fast. As long as the game can update in real
time, the game won’t fall behind. If the player’s machine is top-of-the-line, it will respond

with a smoother gameplay experience.

It’s more complex. The main downside is there is a bit more going on in the
implementation. You have to tune the update time step to be both as small as possible for
the high-end, while not being too slow on the low end.

See Also
The classic article on game loops is Glenn Fiedler’s “Fix Your Timestep“. This chapter
wouldn’t be the same without it.

Witters’ article on game loops is a close runner-up.

The Unity framework has a complex game loop detailed in a wonderful illustration here.

http://gafferongames.com/game-physics/fix-your-timestep/
http://www.koonsolo.com/news/dewitters-gameloop/
http://unity3d.com/
http://www.richardfine.co.uk/2012/10/unity3d-monobehaviour-lifecycle/

Update Method

Intent
Simulate a collection of independent objects by telling each to process one frame of behavior at a
time.

Motivation
The player’s mighty valkyrie is on a quest to steal glorious jewels from where they rest on the bones
of the long-dead sorcerer-king. She tentatively approaches the entrance of his magnificent crypt and is
attacked by… nothing. No cursed statues shooting lightning at her. No undead warriors patrolling the
entrance. She just walks right in and grabs the loot. Game over. You win.

Well, that won’t do.

This crypt needs some guards — enemies our brave heroine can grapple with. First up, we want a re-
animated skeleton warrior to patrol back and forth in front of the door. If you ignore everything you
probably already know about game programming, the simplest possible code to make that skeleton
lurch back and forth is something like:

If the sorcerer-king wanted more intelligent behavior, he should have re-animated something that still had brain tissue.

while (true)
{
 // Patrol right.
 for (double x = 0; x < 100; x++)
 {
 skeleton.setX(x);
 }

 // Patrol left.
 for (double x = 100; x > 0; x--)
 {
 skeleton.setX(x);
 }
}

The problem here, of course, is that the skeleton moves back and forth, but the player never sees it.
The program is locked in an infinite loop, which is not exactly a fun gameplay experience. What we
actually want is for the skeleton to move one step each frame.

We’ll have to remove those loops and rely on the outer game loop for iteration. That ensures the game
keeps responding to user input and rendering while the guard is making his rounds. Like:

Naturally, Game Loop is another pattern in this book.

Entity skeleton;
bool patrollingLeft = false;
double x = 0;

// Main game loop:
while (true)
{
 if (patrollingLeft)
 {
 x--;
 if (x == 0) patrollingLeft = false;
 }
 else
 {
 x++;
 if (x == 100) patrollingLeft = true;

 }

 skeleton.setX(x);

 // Handle user input and render game...
}

I did the before/after here to show you how the code gets more complex. Patrolling left and right used
to be two simple for loops. It kept track of which direction the skeleton was moving implicitly by
which loop was executing. Now that we have to yield to the outer game loop each frame and then
resume where we left off, we have to track the direction explicitly using that patrollingLeft
variable.

But this more or less works, so we keep going. A brainless bag of bones doesn’t give yon Norse
maiden too much of a challenge, so the next thing we add is a couple of enchanted statues. These will
fire bolts of lightning at her every so often to keep her on her toes.

Continuing our, “what’s the simplest way to code this” style, we end up with:

// Skeleton variables...
Entity leftStatue;
Entity rightStatue;
int leftStatueFrames = 0;
int rightStatueFrames = 0;

// Main game loop:
while (true)
{
 // Skeleton code...

 if (++leftStatueFrames == 90)
 {
 leftStatueFrames = 0;
 leftStatue.shootLightning();
 }

 if (++rightStatueFrames == 80)
 {
 rightStatueFrames = 0;
 rightStatue.shootLightning();
 }

 // Handle user input and render game...
}

You can tell this isn’t trending towards code we’d enjoy maintaining. We’ve got an increasingly large
pile of variables and imperative code all stuffed in the game loop, each handling one specific entity in
the game. To get them all up and running at the same time, we’ve mushed their code together.

Anytime “mushed” accurately describes your architecture, you likely have a problem.

The pattern we’ll use to fix this is so simple you probably have it in mind already: each entity in the
game should encapsulate its own behavior. This will keep the game loop uncluttered and make it
easy to add and remove entities.

To do this, we need an abstraction layer, and we create that by defining an abstract update()
method. The game loop maintains a collection of objects, but it doesn’t know their concrete types. All

it knows is that they can be updated. This separates each object’s behavior both from the game loop
and from the other objects.

Once per frame, the game loop walks the collection and calls update() on each object. This gives
each one a chance to perform one frame’s worth of behavior. By calling it on all objects every frame,
they all behave simultaneously.

Since some stickler will call me on this, yes, they don’t behave truly concurrently. While one object is updating, none of the others
are. We’ll get into this more in a bit.

The game loop has a dynamic collection of objects, so adding and removing them from the level is
easy — just add and remove them from the collection. Nothing is hardcoded anymore, and we can
even populate the level using some kind of data file, which is exactly what our level designers want.

The Pattern
The game world maintains a collection of objects. Each object implements an update method that
simulates one frame of the object’s behavior. Each frame, the game updates every object in the
collection.

When to Use It
If the Game Loop pattern is the best thing since sliced bread, then the Update Method pattern is its
butter. A wide swath of games featuring live entities that the player interacts with use this pattern in
some form or other. If the game has space marines, dragons, Martians, ghosts, or athletes, there’s a
good chance it uses this pattern.

However, if the game is more abstract and the moving pieces are less like living actors and more like
pieces on a chessboard, this pattern is often a poor fit. In a game like chess, you don’t need to
simulate all of the pieces concurrently, and you probably don’t need to tell the pawns to update
themselves every frame.

You may not need to update their behavior each frame, but even in a board game, you may still want to update their animation every
frame. This pattern can help with that too.

Update methods work well when:

Your game has a number of objects or systems that need to run simultaneously.

Each object’s behavior is mostly independent of the others.

The objects need to be simulated over time.

Keep in Mind
This pattern is pretty simple, so there aren’t a lot of hidden surprises in its dark corners. Still, every
line of code has its ramifications.

Splitting code into single frame slices makes it more complex

When you compare the first two chunks of code, the second is a good bit more complex. Both simply
make the skeleton guard walk back and forth, but the second one does this while yielding control to
the game loop each frame.

That change is almost always necessary to handle user input, rendering, and the other stuff that the
game loop takes care of, so the first example wasn’t very practical. But it’s worth keeping in mind
that there’s a big up front complexity cost when you julienne your behavioral code like this.

I say “almost” here because sometimes you can have your cake and eat it too. You can have straight-line code that never returns for
your object behavior, while simultaneously having a number of objects running concurrently and coordinating with the game loop.

What you need is a system that lets you have multiple “threads” of execution going on at the same time. If the code for an object can
pause and resume in the middle of what it’s doing, instead of having to return completely, you can write it in a more imperative form.

Actual threads are usually too heavyweight for this to work well, but if your language supports lightweight concurrency constructs like
generators, coroutines, or fibers, you may be able to use those.

The Bytecode pattern is another option that creates threads of execution at the application level.

You have to store state to resume where you left off each frame

In the first code sample, we didn’t have any variables to indicate whether the guard was moving left
or right. That was implicit based on which code was currently executing.

When we changed this to a one-frame-at-a-time form, we had to create a patrollingLeft variable
to track that. When we return out of the code, the execution position is lost, so we need to explicitly
store enough information to restore it on the next frame.

The State pattern can often help here. Part of the reason state machines are common in games is
because (like their name implies) they store the kind of state that you need to pick up where you left
off.

Objects all simulate each frame but are not truly concurrent

In this pattern, the game loops over a collection of objects and updates each one. Inside the update()
call, most objects are able to reach out and touch the rest of the game world, including other objects
that are being updated. This means the order in which the objects are updated is significant.

If A comes before B in the list of objects, then when A updates, it will see B’s previous state. But
when B updates, it will see A’s new state, since A has already been updated this frame. Even though
from the player’s perspective, everything is moving at the same time, the core of the game is still turn-
based. It’s just that a complete “turn” is only one frame long.

If, for some reason, you decide you don’t want your game to be sequential like this, you would need to use something like the Double
Buffer pattern. That makes the order in which A and B update not matter because both of them will see the previous frame’s state.

This is mostly a good thing as far as the game logic is concerned. Updating objects in parallel leads
you to some unpleasant semantic corners. Imagine a game of chess where black and white moved at
the same time. They both try to make a move that places a piece in the same currently empty square.
How should this be resolved?

Updating sequentially solves this — each update incrementally changes the world from one valid
state to the next with no period of time where things are ambiguous and need to be reconciled.

It also helps online play since you have a serialized set of moves that can be sent over the network.

Be careful modifying the object list while updating

When you’re using this pattern, a lot of the game’s behavior ends up nestled in these update methods.
That often includes code that adds or removes updatable objects from the game.

For example, say a skeleton guard drops an item when slain. With a new object, you can usually add
it to the end of the list without too much trouble. You’ll keep iterating over that list and eventually get
to the new one at the end and update it too.

But that does mean that the new object gets a chance to act during the frame that it was spawned,
before the player has even had a chance to see it. If you don’t want that to happen, one simple fix is to
cache the number of objects in the list at the beginning of the update loop and only update that many
before stopping:

int numObjectsThisTurn = numObjects_;
for (int i = 0; i < numObjectsThisTurn; i++)
{
 objects_[i]->update();
}

Here, objects_ is an array of the updatable objects in the game, and numObjects_ is its length.
When new objects are added, it gets incremented. We cache the length in numObjectsThisTurn at
the beginning of the loop so that the iteration stops before we get to any new objects added during the
current frame.

A hairier problem is when objects are removed while iterating. You vanquish some foul beast and
now it needs to get yanked out of the object list. If it happens to be before the current object you’re
updating in the list, you can accidentally skip an object:

for (int i = 0; i < numObjects_; i++)

{
 objects_[i]->update();
}

This simple loop increments the index of the object being updated each iteration. The left side of the
illustration below shows what the array looks like while we’re updating the heroine:

Since we’re updating her, i is 1. She slays the foul beast so it gets removed from the array. The
heroine shifts up to 0, and the hapless peasant shifts up to 1. After updating the heroine, i is
incremented to 2. As you can see on the right, the hapless peasant is skipped over and never gets
updated.

A cheap solution is to walk the list backwards when you update. That way removing an object only shifts items that were already
updated.

One fix is to just be careful when you remove objects and update any iteration variables to take the
removal into account. Another is to defer removals until you’re done walking the list. Mark the object
as “dead”, but leave it in place. During updating, make sure to skip any dead objects. Then, when
that’s done, walk the list again to remove the corpses.

If you have multiple threads processing the items in the update loop, then you are even more likely to defer any modification to it to
avoid costly thread synchronization during updates.

Sample Code
This pattern is so straightforward that the sample code almost belabors the point. That doesn’t mean
the pattern isn’t useful. It’s useful in part because it’s simple: it’s a clean solution to a problem
without a lot of ornamentation.

But to keep things concrete, let’s walk through a basic implementation. We’ll start with an Entity
class that will represent the skeletons and statues:

class Entity
{
public:
 Entity()
 : x_(0), y_(0)
 {}

 virtual ~Entity() {}
 virtual void update() = 0;

 double x() const { return x_; }
 double y() const { return y_; }

 void setX(double x) { x_ = x; }
 void setY(double y) { y_ = y; }

private:
 double x_;
 double y_;
};

I stuck a few things in there, but just the bare minimum we’ll need later. Presumably in real code,
there’d be lots of other stuff like graphics and physics. The important bit for this pattern is that it has
an abstract update() method.

The game maintains a collection of these entities. In our sample, we’ll put that in a class representing
the game world:

class World
{
public:
 World()
 : numEntities_(0)
 {}

 void gameLoop();

private:
 Entity* entities_[MAX_ENTITIES];
 int numEntities_;
};

In a real-world program, you’d probably use an actual collection class, but I’m just using a vanilla array here to keep things simple.

Now that everything is set up, the game implements the pattern by updating each entity every frame:

void World::gameLoop()
{
 while (true)

 {
 // Handle user input...

 // Update each entity.
 for (int i = 0; i < numEntities_; i++)
 {
 entities_[i]->update();
 }

 // Physics and rendering...
 }
}

As the name of the method implies, this is an example of the Game Loop pattern.

Subclassing entities?!

There are some readers whose skin is crawling right now because I’m using inheritance on the main
Entity class to define different behaviors. If you don’t happen to see the problem, I’ll provide some
context.

When the game industry emerged from the primordial seas of 6502 assembly code and VBLANKs
onto the shores of object-oriented languages, developers went into a software architecture fad frenzy.
One of the biggest was using inheritance. Towering, Byzantine class hierarchies were built, big
enough to blot out the sun.

It turns out that was a terrible idea and no one can maintain a giant class hierarchy without it
crumbling around them. Even the Gang of Four knew this in 1994 when they wrote:

Favor ‘object composition’ over ‘class inheritance’.

Between you and me, I think the pendulum has swung a bit too far away from subclassing. I generally avoid it, but being dogmatic
about not using inheritance is as bad as being dogmatic about using it. You can use it in moderation without having to be a teetotaler.

When this realization percolated through the game industry, the solution that emerged was the
Component pattern. Using that, update() would be on the entity’s components and not on Entity
itself. That lets you avoid creating complicated class hierarchies of entities to define and reuse
behavior. Instead, you just mix and match components.

If I were making a real game, I’d probably do that too. But this chapter isn’t about components. It’s
about update() methods, and the simplest way I can show them, with as few moving parts as
possible, is by putting that method right on Entity and making a few subclasses.

This one is.

Defining entities

OK, back to the task at hand. Our original motivation was to be able to define a patrolling skeleton
guard and some lightning-bolt-unleashing magical statues. Let’s start with our bony friend. To define
his patrolling behavior, we make a new entity that implements update() appropriately:

class Skeleton : public Entity
{
public:
 Skeleton()
 : patrollingLeft_(false)
 {}

 virtual void update()
 {
 if (patrollingLeft_)
 {
 setX(x() - 1);
 if (x() == 0) patrollingLeft_ = false;
 }
 else
 {
 setX(x() + 1);
 if (x() == 100) patrollingLeft_ = true;
 }
 }

private:
 bool patrollingLeft_;
};

As you can see, we pretty much just cut that chunk of code from the game loop earlier in the chapter
and pasted it into Skeleton’s update() method. The one minor difference is that patrollingLeft_
has been made into a field instead of a local variable. That way, its value sticks around between calls
to update().

Let’s do this again with the statue:

class Statue : public Entity
{
public:
 Statue(int delay)
 : frames_(0),
 delay_(delay)
 {}

 virtual void update()
 {
 if (++frames_ == delay_)
 {
 shootLightning();

 // Reset the timer.
 frames_ = 0;
 }
 }

private:
 int frames_;
 int delay_;

 void shootLightning()
 {
 // Shoot the lightning...
 }
};

Again, most of the change is moving code from the game loop into the class and renaming some stuff.
In this case, though, we’ve actually made the codebase simpler. In the original nasty imperative code,

there were separate local variables for each statue’s frame counter and rate of fire.

Now that those have been moved into the Statue class itself, you can create as many as you want and
each instance will have its own little timer. That’s really the motivation behind this pattern — it’s
now much easier to add new entities to the game world because each one brings along everything it
needs to take care of itself.

This pattern lets us separate populating the game world from implementing it. This in turn gives us
the flexibility to populate the world using something like a separate data file or level editor.

Do people still care about UML? If so, here’s what we just created.

Passing time

That’s the key pattern, but I’ll just touch on a common refinement. So far, we’ve assumed every call
to update() advances the state of the game world by the same fixed unit of time.

I happen to prefer that, but many games use a variable time step. In those, each turn of the game loop
may simulate a larger or smaller slice of time depending on how long it took to process and render
the previous frame.

The Game Loop chapter has a lot more on the advantages and disadvantages of fixed and variable time steps.

That means that each update() call needs to know how far the hand of the virtual clock has swung,
so you’ll often see the elapsed time passed in. For example, we can make our patrolling skeleton
handle a variable time step like so:

void Skeleton::update(double elapsed)
{
 if (patrollingLeft_)
 {
 x -= elapsed;
 if (x <= 0)
 {
 patrollingLeft_ = false;
 x = -x;
 }
 }
 else
 {
 x += elapsed;
 if (x >= 100)
 {
 patrollingLeft_ = true;
 x = 100 - (x - 100);
 }
 }
}

Now, the distance the skeleton moves increases as the elapsed time grows. You can also see the
additional complexity of dealing with a variable time step. The skeleton may overshoot the bounds of
its patrol with a large time slice, and we have to handle that carefully.

Design Decisions
With a simple pattern like this, there isn’t too much variation, but there are still a couple of knobs you
can turn.

What class does the update method live on?

The most obvious and most important decision you’ll make is what class to put update() on.

The entity class:

This is the simplest option if you already have an entity class since it doesn’t bring any
additional classes into play. This may work if you don’t have too many kinds of entities, but the
industry is generally moving away from this.

Having to subclass Entity every time you want a new behavior is brittle and painful when you
have a large number of different kinds. You’ll eventually find yourself wanting to reuse pieces of
code in a way that doesn’t gracefully map to a single inheritance hierarchy, and then you’re
stuck.

The component class:

If you’re already using the Component pattern, this is a no-brainer. It lets each component update
itself independently. In the same way that the Update Method pattern in general lets you decouple
game entities from each other in the game world, this lets you decouple parts of a single entity
from each other. Rendering, physics, and AI can all take care of themselves.

A delegate class:

There are other patterns that involve delegating part of a class’s behavior to another object. The
State pattern does this so that you can change an object’s behavior by changing what it delegates
to. The Type Object pattern does this so that you can share behavior across a bunch of entities of
the same “kind”.

If you’re using one of those patterns, it’s natural to put update() on that delegated class. In that
case, you may still have the update() method on the main class, but it will be non-virtual and
will simply forward to the delegated object. Something like:

void Entity::update()
{
 // Forward to state object.
 state_->update();
}

Doing this lets you define new behavior by changing out the delegated object. Like using
components, it gives you the flexibility to change behavior without having to define an entirely

new subclass.

How are dormant objects handled?

You often have a number of objects in the world that, for whatever reason, temporarily don’t need to
be updated. They could be disabled, or off-screen, or not unlocked yet. If a large number of objects
are in this state, it can be a waste of CPU cycles to walk over them each frame only to do nothing.

One alternative is to maintain a separate collection of just the “live” objects that do need updating.
When an object is disabled, it’s removed from the collection. When it gets re-enabled, it’s added
back. This way, you only iterate over items that actually have real work do to.

If you use a single collection containing inactive objects:

You waste time. For inactive objects, you’ll end up either checking some “am I enabled”
flag or calling a method that does nothing.

In addition to wasted CPU cycles checking if the object is enabled and skipping past it, pointlessly iterating over objects
can blow your data cache. CPUs optimize reads by loading memory from RAM into much faster on-chip caches. They
do this speculatively by assuming you’re likely to read memory right after a location you just read.

When you skip over an object, you can skip past the end of the cache, forcing it to go and slowly pull in another chunk of
main memory.

If you use a separate collection of only active objects:

You use extra memory to maintain the second collection. There’s still usually another
master collection of all entities for cases where you need them all. In that case, this
collection is technically redundant. When speed is tighter than memory (which it often is),
this can still be a worthwhile trade-off.

Another option to mitigate this is to have two collections, but have the other collection only
contain the inactive entities instead of all of them.

You have to keep the collections in sync. When objects are created or completely
destroyed (and not just made temporarily inactive), you have to remember to modify both
the master collection and active object one.

The metric that should guide your approach here is how many inactive objects you tend to have. The
more you have, the more useful it is to have a separate collection that avoids them during your core
game loop.

See Also
This pattern, along with Game Loop and Component, is part of a trinity that often forms the
nucleus of a game engine.

When you start caring about the cache performance of updating a bunch of entities or components
in a loop each frame, the Data Locality pattern can help make that faster.

The Unity framework uses this pattern in several classes, including MonoBehaviour.

Microsoft’s XNA platform uses this pattern both in the Game and GameComponent classes.

The Quintus JavaScript game engine uses this pattern on its main Sprite class.

http://unity3d.com
http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.Update.html
http://creators.xna.com/en-US/
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.game.update.aspx
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.gamecomponent.update.aspx
http://html5quintus.com/
http://html5quintus.com/guide/sprites.md

Behavioral Patterns
Once you’ve built your game’s set and festooned it with actors and props, all that remains is to start
the scene. For this, you need behavior — the screenplay that tells each entity in your game what to do.

Of course all code is “behavior”, and all software is defining behavior, but what’s different about
games is often the breadth of it that you have to implement. While your word processor may have a
long list of features, it pales in comparison with the number of inhabitants, items, and quests in your
average role-playing game.

The patterns in this chapter help to quickly define and refine a large quantity of maintainable
behavior. Type Objects create categories of behavior without the rigidity of defining an actual class.
A Subclass Sandbox gives you a safe set of primitives you can use to define a variety of behaviors.
The most advanced option is Bytecode, which moves behavior out of code entirely and into data.

The Patterns
Bytecode
Subclass Sandbox
Type Object

Bytecode

Intent
Give behavior the flexibility of data by encoding it as instructions for a virtual machine.

Motivation
Making games may be fun, but it certainly ain’t easy. Modern games require enormous, complex
codebases. Console manufacturers and app marketplace gatekeepers have stringent quality
requirements, and a single crash bug can prevent your game from shipping.

I worked on a game that had six million lines of C++ code. For comparison, the software controlling the Mars Curiosity rover is less
than half that.

At the same time, we’re expected to squeeze every drop of performance out of the platform. Games
push hardware like nothing else, and we have to optimize relentlessly just to keep pace with the
competition.

To handle these high stability and performance requirements, we reach for heavyweight languages
like C++ that have both low-level expressiveness to make the most of the hardware and rich type
systems to prevent or at least corral bugs.

We pride ourselves on our skill at this, but it has its cost. Being a proficient programmer takes years
of dedicated training, after which you must contend with the sheer scale of your codebase. Build
times for large games can vary somewhere between “go get a coffee” and “go roast your own beans,
hand-grind them, pull an espresso, foam some milk, and practice your latte art in the froth”.

On top of these challenges, games have one more nasty constraint: fun. Players demand a play
experience that’s both novel and yet carefully balanced. That requires constant iteration, but if every
tweak requires bugging an engineer to muck around in piles of low-level code and then waiting for a
glacial recompile, you’ve killed your creative flow.

Spell fight!

Let’s say we’re working on a magic-based fighting game. A pair of wizards square off and fling
enchantments at each other until a victor is pronounced. We could define these spells in code, but that
means an engineer has to be involved every time one is modified. When a designer wants to tweak a
few numbers and get a feel for them, they have to recompile the entire game, reboot it, and get back
into a fight.

Like most games these days, we also need to be able to update the game after it ships, both to fix bugs
and to add new content. If all of these spells are hard-coded, then updating them means patching the
actual game executable.

Let’s take things a bit further and say that we also want to support modding. We want users to be able
to create their own spells. If those are in code, that means every modder needs a full compiler
toolchain to build the game, and we have to release the sources. Worse, if they have a bug in their
spell, it can crash the game on some other player’s machine.

Data > code

It’s pretty clear that our engine’s implementation language isn’t the right fit. We need spells to be
safely sandboxed from the core game. We want them to be easy to modify, easy to reload, and
physically separate from the rest of the executable.

I don’t know about you, but to me that sounds a lot like data. If we can define our behavior in
separate data files that the game engine loads and “executes” in some way, we can achieve all of our
goals.

We just need to figure out what “execute” means for data. How do you make some bytes in a file
express behavior? There are a few ways to do this. I think it will help you get a picture of this
pattern’s strengths and weaknesses if we compare it to another one: the Interpreter pattern.

The Interpreter pattern

I could write a whole chapter on this pattern, but four other guys already covered that for me. Instead,
I’ll cram the briefest of introductions in here. It starts with a language — think programming
language — that you want to execute. Say, for example, it supports arithmetic expressions like this:

(1 + 2) * (3 - 4)

Then, you take each piece of that expression, each rule in the language’s grammar, and turn it into an
object. The number literals will be objects:

Basically, they’re little wrappers around the raw value. The operators will be objects too, and they’ll
have references to their operands. If you take into account the parentheses and precedence, that
expression magically turns into a little tree of objects like so:

http://en.wikipedia.org/wiki/Interpreter_pattern

What “magic” is this? It’s simple — parsing. A parser takes a string of characters and turns it into an abstract syntax tree, a
collection of objects representing the grammatical structure of the text.

Whip up one of these and you’ve got yourself half of a compiler.

The Interpreter pattern isn’t about creating that tree; it’s about executing it. The way it works is
pretty clever. Each object in the tree is an expression or a subexpression. In true object-oriented
fashion, we’ll let expressions evaluate themselves.

First, we define a base interface that all expressions implement:

class Expression
{
public:
 virtual ~Expression() {}
 virtual double evaluate() = 0;
};

Then, we define a class that implements this interface for each kind of expression in our language’s
grammar. The simplest one is numbers:

class NumberExpression : public Expression
{
public:
 NumberExpression(double value)
 : value_(value)
 {}

 virtual double evaluate()
 {
 return value_;
 }

private:
 double value_;
};

A literal number expression simply evaluates to its value. Addition and multiplication are a bit more
complex because they contain subexpressions. Before they can evaluate themselves, they need to
recursively evaluate their subexpressions. Like so:

class AdditionExpression : public Expression
{
public:
 AdditionExpression(Expression* left, Expression* right)
 : left_(left),
 right_(right)
 {}

 virtual double evaluate()
 {
 // Evaluate the operands.
 double left = left_->evaluate();
 double right = right_->evaluate();

 // Add them.
 return left + right;
 }

private:
 Expression* left_;
 Expression* right_;
};

I’m sure you can figure out what the implementation of multiply looks like.

Pretty neat right? Just a couple of simple classes and now we can represent and evaluate arbitrarily
complex arithmetic expressions. We just need to create the right objects and wire them up correctly.

Ruby was implemented like this for something like 15 years. At version 1.9, they switched to bytecode like this chapter describes.
Look how much time I’m saving you!

It’s a beautiful, simple pattern, but it has some problems. Look up at the illustration. What do you see?
Lots of little boxes, and lots of arrows between them. Code is represented as a sprawling fractal tree
of tiny objects. That has some unpleasant consequences:

Loading it from disk requires instantiating and wiring up tons of these small objects.

Those objects and the pointers between them use a lot of memory. On a 32-bit machine, that little
arithmetic expression up there takes up at least 68 bytes, not including padding.

If you’re playing along at home, don’t forget to take into account the vtable pointers.

Traversing the pointers into subexpressions is murder on your data cache. Meanwhile, all of
those virtual method calls wreak carnage on your instruction cache.

See the chapter on Data Locality for more on what the cache is and how it affects your performance.

Put those together, and what do they spell? S-L-O-W. There’s a reason most programming languages
in wide use aren’t based on the Interpreter pattern. It’s just too slow, and it uses up too much memory.

Machine code, virtually

Consider our game. When we run it, the player’s computer doesn’t traverse a bunch of C++ grammar
tree structures at runtime. Instead, we compile it ahead of time to machine code, and the CPU runs
that. What’s machine code got going for it?

It’s dense. It’s a solid, contiguous blob of binary data, and no bit goes to waste.

It’s linear. Instructions are packed together and executed one right after another. No jumping
around in memory (unless you’re doing actual control flow, of course).

It’s low-level. Each instruction does one relatively minimal thing, and interesting behavior
comes from composing them.

It’s fast. As a consequence of all of these (well, and the fact that it’s implemented directly in
hardware), machine code runs like the wind.

This sounds swell, but we don’t want actual machine code for our spells. Letting users provide
machine code which our game executes is just begging for security problems. What we need is a
compromise between the performance of machine code and the safety of the Interpreter pattern.

What if instead of loading actual machine code and executing it directly, we defined our own virtual
machine code? We’d then write a little emulator for it in our game. It would be similar to machine
code — dense, linear, relatively low-level — but would also be handled entirely by our game so we
could safely sandbox it.

This is why many game consoles and iOS don’t allow programs to execute machine code loaded or generated at runtime. That’s a
drag because the fastest programming language implementations do exactly that. They contain a “just-in-time” compiler, or JIT, that
translates the language to optimized machine code on the fly.

We’d call our little emulator a virtual machine (or “VM” for short), and the synthetic binary machine
code it runs bytecode. It’s got the flexibility and ease of use of defining things in data, but it has better
performance than higher-level representations like the Interpreter pattern.

In programming language circles, “virtual machine” and “interpreter” are synonymous, and I use them interchangeably here. When I
refer to the Gang of Four’s Interpreter pattern, I’ll use “pattern” to make it clear.

This sounds daunting, though. My goal for the rest of this chapter is to show you that if you keep your
feature list pared down, it’s actually pretty approachable. Even if you end up not using this pattern
yourself, you’ll at least have a better understanding of Lua and many other languages which are
implemented using it.

The Pattern
An instruction set defines the low-level operations that can be performed. A series of instructions is
encoded as a sequence of bytes. A virtual machine executes these instructions one at a time, using a
stack for intermediate values. By combining instructions, complex high-level behavior can be
defined.

When to Use It
This is the most complex pattern in this book, and it’s not something to throw into your game lightly.
Use it when you have a lot of behavior you need to define and your game’s implementation language
isn’t a good fit because:

It’s too low-level, making it tedious or error-prone to program in.

Iterating on it takes too long due to slow compile times or other tooling issues.

It has too much trust. If you want to ensure the behavior being defined can’t break the game, you
need to sandbox it from the rest of the codebase.

Of course, that list describes a bunch of your game. Who doesn’t want a faster iteration loop or more
safety? However, that doesn’t come for free. Bytecode is slower than native code, so it isn’t a good
fit for performance-critical parts of your engine.

Keep in Mind
There’s something seductive about creating your own language or system-within-a-system. I’ll be
doing a minimal example here, but in the real world, these things tend to grow like vines.

For me, game development is seductive in the same way. In both cases, I’m striving to create a virtual space for others to play and be
creative in.

Every time I see someone define a little language or a scripting system, they say, “Don’t worry, it will
be tiny.” Then, inevitably, they add more and more little features until it’s a full-fledged language.
Except, unlike some other languages, it grew in an ad-hoc, organic fashion and has all of the
architectural elegance of a shanty town.

For example, see every templating language ever.

Of course, there’s nothing wrong with making a full-fledged language. Just make sure you do so
deliberately. Otherwise, be very careful to control the scope of what your bytecode can express. Put a
short leash on it before it runs away from you.

You’ll need a front-end

Low-level bytecode instructions are great for performance, but a binary bytecode format is not what
your users are going to author. One reason we’re moving behavior out of code is so that we can
express it at a higher level. If C++ is too low-level, making your users effectively write in assembly
language — even one of your own design — isn’t an improvement!

Challenging that assertion is the venerable game RoboWar. In that game, players write little programs to control a robot in a language
very similar to assembly and the kind of instruction sets we’ll be discussing here.

It was my first introduction to assembly-like languages.

Much like the Gang of Four’s Interpreter pattern, it’s assumed that you also have some way to
generate the bytecode. Usually, users author their behavior in some higher-level format, and a tool
translates that to the bytecode that our virtual machine understands. In other words, a compiler.

I know, that sounds scary. That’s why I’m mentioning it here. If you don’t have the resources to build
an authoring tool, then bytecode isn’t for you. But as we’ll see later, it may not be as bad as you think.

You’ll miss your debugger

Programming is hard. We know what we want the machine to do, but we don’t always communicate
that correctly — we write bugs. To help find and fix those, we’ve amassed a pile of tools to
understand what our code is doing wrong, and how to right it. We have debuggers, static analyzers,
decompilers, etc. All of those tools are designed to work with some existing language: either machine
code or something higher level.

http://en.wikipedia.org/wiki/RoboWar

When you define your own bytecode VM, you leave those tools behind. Sure, you can step through the
VM in your debugger, but that tells you what the VM itself is doing, and not what the bytecode it’s
interpreting is up to. It certainly doesn’t help you map that bytecode back to the high-level form it was
compiled from.

If the behavior you’re defining is simple, you can scrape by without too much tooling to help you
debug it. But as the scale of your content grows, plan to invest real time into features that help users
see what their bytecode is doing. Those features might not ship in your game, but they’ll be critical to
ensure that you actually can ship your game.

Of course, if you want your game to be moddable, then you will ship those features, and they’ll be even more important.

Sample Code
After the previous couple of sections, you might be surprised how straightforward the implementation
is. First, we need to craft an instruction set for our VM. Before we start thinking about bytecode and
stuff, let’s just think about it like an API.

A magical API

If we were defining spells in straight C++ code, what kind of API would we need for that code to call
into? What are the basic operations in the game engine that spells are defined in terms of?

Most spells ultimately change one of the stats of a wizard, so we’ll start with a couple for that:

void setHealth(int wizard, int amount);
void setWisdom(int wizard, int amount);
void setAgility(int wizard, int amount);

The first parameter identifies which wizard is affected, say 0 for the player’s and 1 for their
opponent. This way, healing spells can affect the player’s own wizard, while damaging attacks harm
their nemesis. These three little methods cover a surprisingly wide variety of magical effects.

If the spells just silently tweaked stats, the game logic would be fine, but playing it would bore
players to tears. Let’s fix that:

void playSound(int soundId);
void spawnParticles(int particleType);

These don’t affect gameplay, but they crank up the intensity of the gameplay experience. We could
add more for camera shake, animation, etc., but this is enough to get us started.

A magical instruction set

Now let’s see how we’d turn this programmatic API into something that can be controlled from data.
Let’s start small and then we’ll work our way up to the whole shebang. For now, we’ll ditch all of the
parameters to these methods. We’ll say the set___() methods always affect the player’s own wizard
and always max out the stat. Likewise, the FX operations always play a single hard-coded sound and
particle effect.

Given that, a spell is just a series of instructions. Each one identifies which operation you want to
perform. We can enumerate them:

enum Instruction
{
 INST_SET_HEALTH = 0x00,
 INST_SET_WISDOM = 0x01,
 INST_SET_AGILITY = 0x02,
 INST_PLAY_SOUND = 0x03,

 INST_SPAWN_PARTICLES = 0x04
};

To encode a spell in data, we store an array of enum values. We’ve only got a few different
primitives, so the range of enum values easily fits into a byte. This means the code for a spell is just a
list of bytes — ergo “bytecode”.

Some bytecode VMs use more than a single byte for each instruction and have more complicated rules for how they are decoded.
Actual machine code on common chips like x86 is a good bit more complex.

But a single byte is good enough for the Java Virtual Machine and Microsoft’s Common Language Runtime, which forms the
backbone of the .NET platform, and it’s good enough for us.

To execute a single instruction, we see which primitive it is and dispatch to the right API method:

switch (instruction)
{
 case INST_SET_HEALTH:
 setHealth(0, 100);
 break;

 case INST_SET_WISDOM:
 setWisdom(0, 100);
 break;

 case INST_SET_AGILITY:
 setAgility(0, 100);
 break;

 case INST_PLAY_SOUND:
 playSound(SOUND_BANG);
 break;

 case INST_SPAWN_PARTICLES:
 spawnParticles(PARTICLE_FLAME);
 break;
}

In this way, our interpreter forms the bridge between code world and data world. We can wrap this in
a little VM that executes an entire spell like so:

class VM
{
public:
 void interpret(char bytecode[], int size)
 {
 for (int i = 0; i < size; i++)
 {
 char instruction = bytecode[i];

http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Common_Language_Runtime

 switch (instruction)
 {
 // Cases for each instruction...
 }
 }
 }
};

Type that in and you’ll have written your first virtual machine. Unfortunately, it’s not very flexible.
We can’t define a spell that touches the player’s opponent or lowers a stat. We can only play one
sound!

To get something that starts to have the expressive feel of an actual language, we need to get
parameters in here.

A stack machine

To execute a complex nested expression, you start with the innermost subexpressions. You calculate
those, and the results flow outward as arguments to the expressions that contain them until eventually,
the whole expression has been evaluated.

The Interpreter pattern models this explicitly as a tree of nested objects, but we want the speed of a
flat list of instructions. We still need to ensure results from subexpressions flow to the right
surrounding expressions. But, since our data is flattened, we’ll have to use the order of the
instructions to control that. We’ll do it the same way your CPU does — with a stack.

This architecture is unimaginatively called a stack machine. Programming languages like Forth, PostScript, and Factor expose this
model directly to the user.

class VM
{
public:
 VM()
 : stackSize_(0)
 {}

 // Other stuff...

private:
 static const int MAX_STACK = 128;
 int stackSize_;
 int stack_[MAX_STACK];
};

The VM maintains an internal stack of values. In our example, the only kinds of values our
instructions work with are numbers, so we can use a simple array of ints. Whenever a bit of data
needs to work its way from one instruction to another, it gets there through the stack.

Like the name implies, values can be pushed onto or popped off of the stack, so let’s add a couple of
methods for that:

class VM
{
private:

http://en.wikipedia.org/wiki/Stack_machine
http://en.wikipedia.org/wiki/Forth_(programming_language)
http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/Factor_(programming_language)

 void push(int value)
 {
 // Check for stack overflow.
 assert(stackSize_ < MAX_STACK);
 stack_[stackSize_++] = value;
 }

 int pop()
 {
 // Make sure the stack isn't empty.
 assert(stackSize_ > 0);
 return stack_[--stackSize_];
 }

 // Other stuff...
};

When an instruction needs to receive parameters, it pops them off the stack like so:

switch (instruction)
{
 case INST_SET_HEALTH:
 {
 int amount = pop();
 int wizard = pop();
 setHealth(wizard, amount);
 break;
 }

 case INST_SET_WISDOM:
 case INST_SET_AGILITY:
 // Same as above...

 case INST_PLAY_SOUND:
 playSound(pop());
 break;

 case INST_SPAWN_PARTICLES:
 spawnParticles(pop());
 break;
}

To get some values onto that stack, we need one more instruction: a literal. It represents a raw integer
value. But where does it get its value from? How do we avoid some turtles-all-the-way-down infinite
regress here?

The trick is to take advantage of the fact that our instruction stream is a sequence of bytes — we can
stuff the number directly in the byte array. We define another instruction type for a number literal like
so:

case INST_LITERAL:
{
 // Read the next byte from the bytecode.
 int value = bytecode[++i];
 push(value);
 break;
}

Here, I’m reading a single byte for the value to avoid the fiddly code required to decode a multiple-byte integer, but in a real
implementation, you’ll want to support literals that cover your full numeric range.

It reads the next byte in the bytecode stream as a number and pushes it onto the stack.

Let’s string a few of these instructions together and watch the interpreter execute them to get a feel for
how the stack works. We start with an empty stack and the interpreter pointing to the first instruction:

First, it executes the first INST_LITERAL. That reads the next byte from the bytecode (0) and pushes it
onto the stack:

Then, it executes the second INST_LITERAL. That reads the 10 and pushes it:

Finally, it executes INST_SET_HEALTH. That pops 10 and stores it in amount, then pops 0 and stores
it in wizard. Then, it calls setHealth() with those parameters.

Ta-da! We’ve got a spell that sets the player’s wizard’s health to ten points. Now, we’ve got enough
flexibility to define spells that set either wizard’s stats to whatever amounts we want. We can also
play different sounds and spawn particles.

But… this still feels like a data format. We can’t, for example, raise a wizard’s health by half of their
wisdom. Our designers want to be able to express rules for spells, not just values.

Behavior = composition

If we think of our little VM like a programming language, all it supports now is a couple of built-in
functions and constant parameters for them. To get bytecode to feel like behavior, what we’re missing
is composition.

Our designers need to be able to create expressions that combine different values in interesting ways.
For a simple example, they want spells that modify a stat by a certain amount instead of to a certain
amount.

That requires taking into account a stat’s current value. We have instructions for writing a stat, but we
need to add a couple to read stats:

case INST_GET_HEALTH:
{
 int wizard = pop();
 push(getHealth(wizard));
 break;
}

case INST_GET_WISDOM:
case INST_GET_AGILITY:
 // You get the idea...

As you can see, these work with the stack in both directions. They pop a parameter to determine
which wizard to get the stat for, and then they look up the stat’s value and push that back onto the
stack.

This lets us write spells that copy stats around. We could create a spell that set a wizard’s agility to
their wisdom or a strange incantation that set one wizard’s health to mirror his opponent’s.

Better, but still quite limited. Next, we need arithmetic. It’s time our baby VM learned how to add 1 +
1. We’ll add a few more instructions. By now, you’ve probably got the hang of it and can guess how
they look. I’ll just show addition:

case INST_ADD:
{
 int b = pop();
 int a = pop();
 push(a + b);
 break;
}

Like our other instructions, it pops a couple of values, does a bit of work, and then pushes the result

back. Up until now, every new instruction gave us an incremental improvement in expressiveness, but
we just made a big leap. It isn’t obvious, but we can now handle all sorts of complicated, deeply
nested arithmetic expressions.

Let’s walk through a slightly more complex example. Say we want a spell that increases the player’s
wizard’s health by the average of their agility and wisdom. In code, that’s:

setHealth(0, getHealth(0) +
 (getAgility(0) + getWisdom(0)) / 2);

You might think we’d need instructions to handle the explicit grouping that parentheses give you in the
expression here, but the stack supports that implicitly. Here’s how you could evaluate this by hand:

1. Get the wizard’s current health and remember it.
2. Get the wizard’s agility and remember it.
3. Do the same for their wisdom.
4. Get those last two, add them, and remember the result.
5. Divide that by two and remember the result.
6. Recall the wizard’s health and add it to that result.
7. Take that result and set the wizard’s health to that value.

Do you see all of those “remembers” and “recalls”? Each “remember” corresponds to a push, and the
“recalls” are pops. That means we can translate this to bytecode pretty easily. For example, the first
line to get the wizard’s current health is:

LITERAL 0
GET_HEALTH

This bit of bytecode pushes the wizard’s health onto the stack. If we mechanically translate each line
like that, we end up with a chunk of bytecode that evaluates our original expression. To give you a
feel for how the instructions compose, I’ve done that below.

To show how the stack changes over time, we’ll walk through a sample execution where the wizard’s
current stats are 45 health, 7 agility, and 11 wisdom. Next to each instruction is what the stack looks
like after executing it and then a little comment explaining the instruction’s purpose:

LITERAL 0 [0] # Wizard index
LITERAL 0 [0, 0] # Wizard index
GET_HEALTH [0, 45] # getHealth()
LITERAL 0 [0, 45, 0] # Wizard index
GET_AGILITY [0, 45, 7] # getAgility()
LITERAL 0 [0, 45, 7, 0] # Wizard index
GET_WISDOM [0, 45, 7, 11] # getWisdom()
ADD [0, 45, 18] # Add agility and wisdom
LITERAL 2 [0, 45, 18, 2] # Divisor
DIVIDE [0, 45, 9] # Average agility and wisdom
ADD [0, 54] # Add average to current health
SET_HEALTH [] # Set health to result

If you watch the stack at each step, you can see how data flows through it almost like magic. We push
0 for the wizard index at the beginning, and it just hangs around at the bottom of the stack until we
finally need it for the last SET_HEALTH at the end.

Maybe my threshold for “magic” is a little too low here.

A virtual machine

I could keep going, adding more and more instructions, but this is a good place to stop. As it is,
we’ve got a nice little VM that lets us define fairly open-ended behavior using a simple, compact data
format. While “bytecode” and “virtual machines” sound intimidating, you can see they’re often as
simple as a stack, a loop, and a switch statement.

Remember our original goal to have behavior be nicely sandboxed? Now that you’ve seen exactly
how the VM is implemented, it’s obvious that we’ve accomplished that. The bytecode can’t do
anything malicious or reach out into weird parts of the game engine because we’ve only defined a few
instructions that touch the rest of the game.

We control how much memory it uses by how big of a stack we create, and we’re careful to make
sure it can’t overflow that. We can even control how much time it uses. In our instruction loop, we
can track how many we’ve executed and bail out if it goes over some limit.

Controlling execution time isn’t necessary in our sample because we don’t have any instructions for looping. We could limit execution
time by limiting the total size of the bytecode. This also means our bytecode isn’t Turing-complete.

There’s just one problem left: actually creating the bytecode. So far, we’ve taken bits of pseudocode
and compiled them to bytecode by hand. Unless you’ve got a lot of free time, that’s not going to work
in practice.

Spellcasting tools

One of our initial goals was to have a higher-level way to author behavior, but we’ve gone and
created something lower-level than C++. It has the runtime performance and safety we want, but
absolutely none of the designer-friendly usability.

To fill that gap, we need some tooling. We need a program that lets users define the high-level
behavior of a spell and then takes that and generates the appropriate low-level stack machine
bytecode.

That probably sounds way harder than making the VM. Many programmers were dragged through a
compilers class in college and took away from it nothing but PTSD triggered by the sight of a book
with a dragon on the cover or the words “lex” and “yacc”.

I’m referring, of course, to the classic text Compilers: Principles, Techniques, and Tools.

In truth, compiling a text-based language isn’t that bad, though it’s a bit too broad of a topic to cram in
here. However, you don’t have to do that. What I said we need is a tool — it doesn’t have to be a
compiler whose input format is a text file.

http://en.wikipedia.org/wiki/Lex_(software)
http://en.wikipedia.org/wiki/Yacc
http://en.wikipedia.org/wiki/Compilers:_Principles,_Tech niques,_and_Tools

On the contrary, I encourage you to consider building a graphical interface to let users define their
behavior, especially if the people using it won’t be highly technical. Writing text that’s free of syntax
errors is difficult for people who haven’t spent years getting used to a compiler yelling at them.

Instead, you can build an app that lets users “script” by clicking and dragging little boxes, pulling
down menu items, or whatever else makes sense for the kind of behavior you want them to create.

The scripting system I wrote for Henry Hatsworth in the Puzzling Adventure worked like this.

The nice thing about this is that your UI can make it impossible for users to create “invalid”
programs. Instead of vomiting error messages on them, you can proactively disable buttons or provide

http://en.wikipedia.org/wiki/Henry_Hatsworth_in_the_Puzzling_Adventure

default values to ensure that the thing they’ve created is valid at all points in time.

I want to stress how important error-handling is. As programmers, we tend to view human error as a shameful personality flaw that
we strive to eliminate in ourselves.

To make a system that users enjoy, you have to embrace their humanity, including their fallibility. Making mistakes is what people
do, and is a fundamental part of the creative process. Handling them gracefully with features like undo helps your users be more
creative and create better work.

This spares you from designing a grammar and writing a parser for a little language. But, I know,
some of you find UI programming equally unpleasant. Well, in that case, I don’t have any good news
for you.

Ultimately, this pattern is about expressing behavior in a user-friendly, high-level way. You have to
craft the user experience. To execute the behavior efficiently, you then need to translate that into a
lower-level form. It is real work, but if you’re up to the challenge, it can pay off.

Design Decisions
I tried to keep this chapter as simple as I could, but what we’re really doing is creating a language.
That’s a pretty open-ended design space. Exploring it can be tons of fun, so make sure you don’t
forget to finish your game.

Since this is the longest chapter in the book, it seems I failed that task.

How do instructions access the stack?

Bytecode VMs come in two main flavors: stack-based and register-based. In a stack-based VM,
instructions always work from the top of the stack, like in our sample code. For example, INST_ADD
pops two values, adds them, and pushes the result.

Register-based VMs still have a stack. The only difference is that instructions can read their inputs
from deeper in the stack. Instead of INST_ADD always popping its operands, it has two indexes stored
in the bytecode that identify where in the stack to read the operands from.

With a stack-based VM:

Instructions are small. Since each instruction implicitly finds its arguments on top of the
stack, you don’t need to encode any data for that. This means each instruction can be pretty
small, usually a single byte.

Code generation is simpler. When you get around to writing the compiler or tool that
outputs bytecode, you’ll find it simpler to generate stack-based bytecode. Since each
instruction implicitly works from the top of the stack, you just need to output instructions in
the right order to pass parameters between them.

You have more instructions. Each instruction only sees the very top of the stack. This
means that to generate code for something like a = b + c, you need separate instructions
to move b and c to the top of the stack, perform the operation, then move the result into a.

With a register-based VM:

Instructions are larger. Since instructions need arguments for stack offsets, a single
instruction needs more bits. For example, an instruction in Lua — probably the most well-
known register-based VM — is a full 32-bits. It uses 6 bits for the instruction type, and the
rest are arguments.

The Lua folks don’t specify Lua’s bytecode format, and it changes from version to version. What I’m describing here is
true as of Lua 5.1. For an absolutely amazing deep dive into Lua’s internals, read this.

You have fewer instructions. Since each instruction can do more work, you don’t need as
many of them. Some say you get a performance improvement since you don’t have to shuffle

http://lu aforge.net/docman/83/98/ANoFrillsIntroToLua51VMInstructions.pdf

values around in the stack as much.

So which should you do? My recommendation is to stick with a stack-based VM. They’re simpler to
implement and much simpler to generate code for. Register-based VMs got a reputation for being a bit
faster after Lua converted to that style, but it depends deeply on your actual instructions and on lots of
other details of your VM.

What instructions do you have?

Your instruction set defines the boundaries of what can and cannot be expressed in bytecode, and it
also has a big impact on the performance of your VM. Here’s a laundry list of the different kinds of
instructions you may want:

External primitives. These are the ones that reach out of the VM into the rest of the game engine
and do stuff that the user can see. They control what kinds of real behavior can be expressed in
bytecode. Without these, your VM can’t do anything more than burn CPU cycles.

Internal primitives. These manipulate values inside the VM — things like literals, arithmetic,
comparison operators, and instructions that juggle the stack around.

Control flow. Our example didn’t cover these, but when you want behavior that’s imperative
and conditionally executes instructions or loops and executes instructions more than once, you
need control flow. In the low-level language of bytecode, they’re surprisingly simple: jumps.

In our instruction loop, we had an index to track where we were in the bytecode. All a jump
instruction does is modify that variable and change where we’re currently executing. In other
words, it’s a goto. You can build all kinds of higher-level control flow using that.

Abstraction. If your users start defining a lot of stuff in data, eventually they’ll want to start
reusing bits of bytecode instead of having to copy and paste it. You may want something like
callable procedures.

In their simplest form, procedures aren’t much more complex than a jump. The only difference is
that the VM maintains a second return stack. When it executes a “call” instruction, it pushes the
current instruction index onto the return stack and then jumps to the called bytecode. When it hits
a “return”, the VM pops the index from the return stack and jumps back to it.

How are values represented?

Our sample VM only works with one kind of value, integers. That makes answering this easy — the
stack is just a stack of ints. A more full-featured VM will support different data types: strings,
objects, lists, etc. You’ll have to decide how those are stored internally.

A single datatype:

It’s simple. You don’t have to worry about tagging, conversions, or type-checking.

You can’t work with different data types. This is the obvious downside. Cramming
different types into a single representation — think storing numbers as strings — is asking
for pain.

A tagged variant:

This is the common representation for dynamically typed languages. Every value has two pieces.
The first is a type tag — an enum — that identifies what data type is being stored. The rest of the
bits are then interpreted appropriately according to that type, like:

enum ValueType
{
 TYPE_INT,
 TYPE_DOUBLE,
 TYPE_STRING
};

struct Value
{
 ValueType type;
 union
 {
 int intValue;
 double doubleValue;
 char* stringValue;
 };
};

Values know their type. The nice thing about this representation is that you can check the
type of a value at runtime. That’s important for dynamic dispatch and for ensuring that you
don’t try to perform operations on types that don’t support it.

It takes more memory. Every value has to carry around a few extra bits with it to identify
its type. In something as low-level as a VM, a few bits here and there add up quickly.

An untagged union:

This uses a union like the previous form, but it does not have a type tag that goes along with it.
You have a little blob of bits that could represent more than one type, and it’s up to you to ensure
you don’t misinterpret them.

This is how statically typed languages represent things in memory. Since the type system ensures
at compile time that you aren’t misinterpreting values, you don’t need to validate it at runtime.

This is also how untyped languages like assembly and Forth store values. Those languages leave it to the user to make sure
they don’t write code that misinterprets a value’s type. Not for the faint of heart!

It’s compact. You can’t get any more efficient than storing just the bits you need for the
value itself.

It’s fast. Not having type tags implies you’re not spending cycles checking them at runtime

either. This is one of the reasons statically typed languages tend to be faster than dynamic
ones.

It’s unsafe. This is the real cost, of course. A bad chunk of bytecode that causes you to
misinterpret a value and treat a number like a pointer or vice versa can violate the security
of your game or make it crash.

If your bytecode was compiled from a statically typed language, you might think you’re safe here because the compiler
won’t generate unsafe bytecode. That may be true, but remember that malicious users may hand-craft evil bytecode
without going through your compiler.

That’s why, for example, the Java Virtual Machine has to do bytecode verification when it loads a program.

An interface:

The object-oriented solution for a value that maybe be one of several different types is through
polymorphism. An interface provides virtual methods for the various type tests and conversions,
along the lines of:

class Value
{
public:
 virtual ~Value() {}

 virtual ValueType type() = 0;

 virtual int asInt() {
 // Can only call this on ints.
 assert(false);
 return 0;
 }

 // Other conversion methods...
};

Then you have concrete classes for each specific data type, like:

class IntValue : public Value
{
public:
 IntValue(int value)
 : value_(value)
 {}

 virtual ValueType type() { return TYPE_INT; }
 virtual int asInt() { return value_; }

private:
 int value_;
};

It’s open-ended. You can define new value types outside of the core VM as long as they
implement the base interface.

It’s object-oriented. If you adhere to OOP principles, this does things the “right” way and
uses polymorphic dispatch for type-specific behavior instead of something like switching
on a type tag.

It’s verbose. You have to define a separate class with all of the associated ceremonial
verbiage for each data type. Note that in the previous examples, we showed the entire
definition of all of the value types. Here, we only cover one!

It’s inefficient. To get polymorphism, you have to go through a pointer, which means even
tiny values like Booleans and numbers get wrapped in objects that are allocated on the
heap. Every time you touch a value, you have to do a virtual method call.

In something like the core of a virtual machine, small performance hits like this quickly add
up. In fact, this suffers from many of the problems that caused us to avoid the Interpreter
pattern, except now the problem is in our values instead of our code.

My recommendation is that if you can stick with a single data type, do that. Otherwise, do a tagged
union. That’s what almost every language interpreter in the world does.

How is the bytecode generated?

I saved the most important question for last. I’ve walked you through the code to consume and
interpret bytecode, but it’s up to you to build something to produce it. The typical solution here is to
write a compiler, but it’s not the only option.

If you define a text-based language:

You have to define a syntax. Both amateur and professional language designers
categorically underestimate how difficult this is to do. Defining a grammar that makes
parsers happy is easy. Defining one that makes users happy is hard.

Syntax design is user interface design, and that process doesn’t get easier when you
constrain the user interface to a string of characters.

You have to implement a parser. Despite their reputation, this part is pretty easy. Either
use a parser generator like ANTLR or Bison, or — like I do — hand-roll a little recursive
descent one, and you’re good to go.

You have to handle syntax errors. This is one of the most important and most difficult parts
of the process. When users make syntax and semantic errors — which they will, constantly
— it’s your job to guide them back onto the right path. Giving helpful feedback isn’t easy
when all you know is that your parser is sitting on some unexpected punctuation.

It will likely turn off non-technical users. We programmers like text files. Combined with
powerful command-line tools, we think of them as the LEGO blocks of computing —
simple, but easily composable in a million ways.

Most non-programmers don’t think of plaintext like that. To them, text files feel like filling
in tax forms for an angry robotic auditor that yells at them if they forget a single semicolon.

If you define a graphical authoring tool:

You have to implement a user interface. Buttons, clicks, drags, stuff like that. Some cringe
at the idea of this, but I personally love it. If you go down this route, it’s important to treat
designing the user interface as a core part of doing your job well — not just an unpleasant
task to be muddled through.

Every little bit of extra work you do here will make your tool easier and more pleasant to
use, and that directly leads to better content in your game. If you look behind many of the
games you love, you’ll often find the secret was fun authoring tools.

You have fewer error cases. Because the user is building behavior interactively one step at
a time, your application can guide them away from mistakes as soon as they happen.

With a text-based language, the tool doesn’t see any of the user’s content until they throw an
entire file at it. That makes it harder to prevent and handle errors.

Portability is harder. The nice thing about text compilers is that text files are universal. A
simple compiler just reads in one file and writes one out. Porting that across operating
systems is trivial.

Except for line endings. And encodings.

When you’re building a UI, you have to choose which framework to use, and many of those
are specific to one OS. There are cross-platform UI toolkits too, but those often get ubiquity
at the expense of familiarity — they feel equally foreign on all of platforms.

See Also
This pattern’s close sister is the Gang of Four’s Interpreter pattern. Both give you a way to
express composable behavior in terms of data.

In fact, you’ll often end up using both patterns. The tool you use to generate bytecode will have
an internal tree of objects that represents the code. This is exactly what the Interpreter pattern
expects.

In order to compile that to bytecode, you’ll recursively walk the tree, just like you do to interpret
it with the Interpreter pattern. The only difference is that instead of executing a primitive piece
of behavior immediately, you output the bytecode instruction to perform that later.

The Lua programming language is the most widely used scripting language in games. It’s
implemented internally as a very compact register-based bytecode VM.

Kismet is a graphical scripting tool built into UnrealEd, the editor for the Unreal engine.

My own little scripting language, Wren, is a simple stack-based bytecode interpreter.

http://en.wikipedia.org/wiki/Interpreter_pattern
http://www.lua.org/
http://en.wikipedia.org/wiki/UnrealEd#Kismet
https://github.com/munificent/wren

Subclass Sandbox

Intent
Define behavior in a subclass using a set of operations provided by its base class.

Motivation
Every kid has dreamed of being a superhero, but unfortunately, cosmic rays are in short supply here
on Earth. Games that let you pretend to be a superhero are the closest approximation. Because our
game designers have never learned to say, “no”, our superhero game aims to feature dozens, if not
hundreds, of different superpowers that heroes may choose from.

Our plan is that we’ll have a Superpower base class. Then, we’ll have a derived class that
implements each superpower. We’ll divvy up the design doc among our team of programmers and get
coding. When we’re done, we’ll have a hundred superpower classes.

When you find yourself with a lot of subclasses, like in this example, that often means a data-driven approach is better. Instead of lots
of code for defining different powers, try finding a way to define that behavior in data instead.

Patterns like Type Object, Bytecode, and Interpreter can all help.

We want to immerse our players in a world teeming with variety. Whatever power they dreamed up
when they were a kid, we want in our game. That means these superpower subclasses will be able to
do just about everything: play sounds, spawn visual effects, interact with AI, create and destroy other
game entities, and mess with physics. There’s no corner of the codebase that they won’t touch.

Let’s say we unleash our team and get them writing superpower classes. What’s going to happen?

There will be lots of redundant code. While the different powers will be wildly varied, we can
still expect plenty of overlap. Many of them will spawn visual effects and play sounds in the
same way. A freeze ray, heat ray, and Dijon mustard ray are all pretty similar when you get
down to it. If the people implementing those don’t coordinate, there’s going to be a lot of
duplicate code and effort.

Every part of the game engine will get coupled to these classes. Without knowing better,
people will write code that calls into subsystems that were never meant to be tied directly to the
superpower classes. If our renderer is organized into several nice neat layers, only one of which
is intended to be used by code outside of the graphics engine, we can bet that we’ll end up with
superpower code that pokes into every one of them.

When these outside systems need to change, odds are good some random superpower code
will get broken. Once we have different superpower classes coupling themselves to various and
sundry parts of the game engine, it’s inevitable that changes to those systems will impact the
power classes. That’s no fun because your graphics, audio, and UI programmers probably don’t
want to also have to be gameplay programmers too.

It’s hard to define invariants that all superpowers obey. Let’s say we want to make sure that
all audio played by our powers gets properly queued and prioritized. There’s no easy way to do
that if our hundred classes are all directly calling into the sound engine on their own.

What we want is to give each of the gameplay programmers who is implementing a superpower a set

http://en.wikipedia.org/wiki/Interpreter_pattern

of primitives they can play with. You want your power to play a sound? Here’s your playSound()
function. You want particles? Here’s spawnParticles(). We’ll make sure these operations cover
everything you need to do so that you don’t need to #include random headers and nose your way into
the rest of the codebase.

We do this by making these operations protected methods of the Superpower base class. Putting
them in the base class gives every power subclass direct, easy access to the methods. Making them
protected (and likely non-virtual) communicates that they exist specifically to be called by
subclasses.

Once we have these toys to play with, we need a place to use them. For that, we’ll define a sandbox
method, an abstract protected method that subclasses must implement. Given those, to implement a
new kind of power, you:

1. Create a new class that inherits from Superpower.

2. Override activate(), the sandbox method.

3. Implement the body of that by calling the protected methods that Superpower provides.

We can fix our redundant code problem now by making those provided operations as high-level as
possible. When we see code that’s duplicated between lots of the subclasses, we can always roll it
up into Superpower as a new operation that they can all use.

We’ve addressed our coupling problem by constraining the coupling to one place. Superpower itself
will end up coupled to the different game systems, but our hundred derived classes will not. Instead,
they are only coupled to their base class. When one of those game systems changes, modification to
Superpower may be necessary, but dozens of subclasses shouldn’t have to be touched.

This pattern leads to an architecture where you have a shallow but wide class hierarchy. Your
inheritance chains aren’t deep, but there are a lot of classes that hang off Superpower. By having a
single class with a lot of direct subclasses, we have a point of leverage in our codebase. Time and
love that we put into Superpower can benefit a wide set of classes in the game.

Lately, you find a lot of people criticizing inheritance in object-oriented languages. Inheritance is problematic — there’s really no
deeper coupling in a codebase than the one between a base class and its subclass — but I find wide inheritance trees to be easier to
work with than deep ones.

The Pattern
A base class defines an abstract sandbox method and several provided operations. Marking them
protected makes it clear that they are for use by derived classes. Each derived sandboxed subclass
implements the sandbox method using the provided operations.

When to Use It
The Subclass Sandbox pattern is a very simple, common pattern lurking in lots of codebases, even
outside of games. If you have a non-virtual protected method laying around, you’re probably already
using something like this. Subclass Sandbox is a good fit when:

You have a base class with a number of derived classes.

The base class is able to provide all of the operations that a derived class may need to perform.

There is behavioral overlap in the subclasses and you want to make it easier to share code
between them.

You want to minimize coupling between those derived classes and the rest of the program.

Keep in Mind
“Inheritance” is a bad word in many programming circles these days, and one reason is that base
classes tend to accrete more and more code. This pattern is particularly susceptible to that.

Since subclasses go through their base class to reach the rest of the game, the base class ends up
coupled to every system any derived class needs to talk to. Of course, the subclasses are also
intimately tied to their base class. That spiderweb of coupling makes it very hard to change the base
class without breaking something — you’ve got the brittle base class problem.

The flip side of the coin is that since most of your coupling has been pushed up to the base class, the
derived classes are now much more cleanly separated from the rest of the world. Ideally, most of
your behavior will be in those subclasses. That means much of your codebase is isolated and easier
to maintain.

Still, if you find this pattern is turning your base class into a giant bowl of code stew, consider pulling
some of the provided operations out into separate classes that the base class can dole out
responsibility to. The Component pattern can help here.

http://en.wikipedia.org/wiki/Fragile_base_class

Sample Code
Because this is such a simple pattern, there isn’t much to the sample code. That doesn’t mean it isn’t
useful — the pattern is about the intent, not the complexity of its implementation.

We’ll start with our Superpower base class:

class Superpower
{
public:
 virtual ~Superpower() {}

protected:
 virtual void activate() = 0;

 void move(double x, double y, double z)
 {
 // Code here...
 }

 void playSound(SoundId sound, double volume)
 {
 // Code here...
 }

 void spawnParticles(ParticleType type, int count)
 {
 // Code here...
 }
};

The activate() method is the sandbox method. Since it is virtual and abstract, subclasses must
override it. This makes it clear to someone creating a power subclass where their work has to go.

The other protected methods, move(), playSound(), and spawnParticles(), are the provided
operations. These are what the subclasses will call in their implementation of activate().

We didn’t implement the provided operations in this example, but an actual game would have real
code there. Those methods are where Superpower gets coupled to other systems in the game
— move() may call into physics code, playSound() will talk to the audio engine, etc. Since this is
all in the implementation of the base class, it keeps that coupling encapsulated within Superpower
itself.

OK, now let’s get our radioactive spiders out and create a power. Here’s one:

class SkyLaunch : public Superpower
{
protected:
 virtual void activate()
 {
 // Spring into the air.
 playSound(SOUND_SPROING, 1.0f);
 spawnParticles(PARTICLE_DUST, 10);
 move(0, 0, 20);
 }
};

OK, maybe being able to jump isn’t all that super, but I’m trying to keep things basic here.

This power springs the superhero into the air, playing an appropriate sound and kicking up a little
cloud of dust. If all of the superpowers were this simple — just a combination of sound, particle
effect, and motion — then we wouldn’t need this pattern at all. Instead, Superpower could have a
baked-in implementation of activate() that accesses fields for the sound ID, particle type, and
movement. But that only works when every power essentially works the same way with only some
differences in data. Let’s elaborate on it a bit:

class Superpower
{
protected:
 double getHeroX()
 {
 // Code here...
 }

 double getHeroY()
 {
 // Code here...
 }

 double getHeroZ()
 {
 // Code here...
 }

 // Existing stuff...
};

Here, we’ve added a couple of methods to get the hero’s position. Our SkyLaunch subclass can now
use those:

class SkyLaunch : public Superpower
{
protected:
 virtual void activate()
 {
 if (getHeroZ() == 0)
 {
 // On the ground, so spring into the air.
 playSound(SOUND_SPROING, 1.0f);
 spawnParticles(PARTICLE_DUST, 10);
 move(0, 0, 20);
 }
 else if (getHeroZ() < 10.0f)
 {
 // Near the ground, so do a double jump.
 playSound(SOUND_SWOOP, 1.0f);
 move(0, 0, getHeroZ() - 20);
 }
 else
 {
 // Way up in the air, so do a dive attack.
 playSound(SOUND_DIVE, 0.7f);
 spawnParticles(PARTICLE_SPARKLES, 1);
 move(0, 0, -getHeroZ());
 }
 }
};

Since we have access to some state, now our sandbox method can do actual, interesting control flow.

Here, it’s still just a couple of simple if statements, but you can do anything you want. By having the
sandbox method be an actual full-fledged method that contains arbitrary code, the sky’s the limit.

Earlier, I suggested a data-driven approach for powers. This is one reason why you may decide not to do that. If your behavior is
complex and imperative, it is more difficult to define in data.

Design Decisions
As you can see, Subclass Sandbox is a fairly “soft” pattern. It describes a basic idea, but it doesn’t
have a lot of detailed mechanics. That means you’ll be making some interesting choices each time you
apply it. Here are some questions to consider.

What operations should be provided?

This is the biggest question. It deeply affects how this pattern feels and how well it works. At the
minimal end of the spectrum, the base class doesn’t provide any operations. It just has a sandbox
method. To implement it, you’ll have to call into systems outside of the base class. If you take that
angle, it’s probably not even fair to say you’re using this pattern.

On the other end of the spectrum, the base class provides every operation that a subclass may need.
Subclasses are only coupled to the base class and don’t call into any outside systems whatsoever.

Concretely, this means each source file for a subclass would only need a single #include — the one for its base class.

Between these two points, there’s a wide middle ground where some operations are provided by the
base class and others are accessed directly from the outside system that defines it. The more
operations you provide, the less coupled subclasses are to outside systems, but the more coupled the
base class is. It removes coupling from the derived classes, but it does so by pushing that up to the
base class itself.

That’s a win if you have a bunch of derived classes that were all coupled to some outside system. By
moving the coupling up into a provided operation, you’ve centralized it into one place: the base class.
But the more you do this, the bigger and harder to maintain that one class becomes.

So where should you draw the line? Here are a few rules of thumb:

If a provided operation is only used by one or a few subclasses, you don’t get a lot of bang for
your buck. You’re adding complexity to the base class, which affects everyone, but only a
couple of classes benefit.

This may be worth it to make the operation consistent with other provided operations, or it may
be simpler and cleaner to let those special case subclasses call out to the external systems
directly.

When you call a method in some other corner of the game, it’s less intrusive if that method
doesn’t modify any state. It still creates a coupling, but it’s a “safe” coupling because it can’t
break anything in the game.

“Safe” is in quotes here because technically, even just accessing data can cause problems. If your game is multi-threaded, you
could read something at the same time that it’s being modified. If you aren’t careful, you could end up with bogus data.

Another nasty case is if your game state is strictly deterministic (which many online games are in order to keep players in
sync). If you access something outside of the set of synchronized game state, you can cause incredibly painful non-determinism
bugs.

Calls that do modify state, on the other hand, more deeply tie you to those parts of the codebase,
and you need to be much more cognizant of that. That makes them good candidates for being
rolled up into provided operations in the more visible base class.

If the implementation of a provided operation only forwards a call to some outside system, then
it isn’t adding much value. In that case, it may be simpler to call the outside method directly.

However, even simple forwarding can still be useful — those methods often access state that the
base class doesn’t want to directly expose to subclasses. For example, let’s say Superpower
provided this:

void playSound(SoundId sound, double volume)
{
 soundEngine_.play(sound, volume);
}

It’s just forwarding the call to some soundEngine_ field in Superpower. The advantage, though,
is that it keeps that field encapsulated in Superpower so subclasses can’t poke at it.

Should methods be provided directly, or through objects that
contain them?

The challenge with this pattern is that you can end up with a painfully large number of methods
crammed into your base class. You can mitigate that by moving some of those methods over to other
classes. The provided operations in the base class then just return one of those objects.

For example, to let a power play sounds, we could add these directly to Superpower:

class Superpower
{
protected:
 void playSound(SoundId sound, double volume)
 {
 // Code here...
 }

 void stopSound(SoundId sound)
 {
 // Code here...
 }

 void setVolume(SoundId sound)
 {
 // Code here...
 }

 // Sandbox method and other operations...
};

But if Superpower is already getting large and unwieldy, we might want to avoid that. Instead, we

create a SoundPlayer class that exposes that functionality:

class SoundPlayer
{
 void playSound(SoundId sound, double volume)
 {
 // Code here...
 }

 void stopSound(SoundId sound)
 {
 // Code here...
 }

 void setVolume(SoundId sound)
 {
 // Code here...
 }
};

Then Superpower provides access to it:

class Superpower
{
protected:
 SoundPlayer& getSoundPlayer()
 {
 return soundPlayer_;
 }

 // Sandbox method and other operations...

private:
 SoundPlayer soundPlayer_;
};

Shunting provided operations into auxiliary classes like this can do a few things for you:

It reduces the number of methods in the base class. In the example here, we went from three
methods to just a single getter.

Code in the helper class is usually easier to maintain. Core base classes like Superpower,
despite our best intentions, tend to be tricky to change since so much depends on them. By
moving functionality over to a less coupled secondary class, we make that code easier to poke at
without breaking things.

It lowers the coupling between the base class and other systems. When playSound() was a
method directly on Superpower, our base class was directly tied to SoundId and whatever
audio code the implementation called into. Moving that over to SoundPlayer reduces
Superpower‘s coupling to the single SoundPlayer class, which then encapsulates all of its
other dependencies.

How does the base class get the state that it needs?

Your base class will often need some data that it wants to encapsulate and keep hidden from its

subclasses. In our first example, the Superpower class provided a spawnParticles() method. If the
implementation of that needs some particle system object, how would it get one?

Pass it to the base class constructor:

The simplest solution is to have the base class take it as a constructor argument:

class Superpower
{
public:
 Superpower(ParticleSystem* particles)
 : particles_(particles)
 {}

 // Sandbox method and other operations...

private:
 ParticleSystem* particles_;
};

This safely ensures that every superpower does have a particle system by the time it’s
constructed. But let’s look at a derived class:

class SkyLaunch : public Superpower
{
public:
 SkyLaunch(ParticleSystem* particles)
 : Superpower(particles)
 {}
};

Here we see the problem. Every derived class will need to have a constructor that calls the base
class one and passes along that argument. That exposes every derived class to a piece of state
that we don’t want them to know about.

This is also a maintenance headache. If we later add another piece of state to the base class,
every constructor in each of our derived classes will have to be modified to pass it along.

Do two-stage initialization:

To avoid passing everything through the constructor, we can split initialization into two steps.
The constructor will take no parameters and just create the object. Then, we call a separate
method defined directly on the base class to pass in the rest of the data that it needs:

Superpower* power = new SkyLaunch();
power->init(particles);

Note here that since we aren’t passing anything into the constructor for SkyLaunch, it isn’t
coupled to anything we want to keep private in Superpower. The trouble with this approach,
though, is that you have to make sure you always remember to call init(). If you ever forget,
you’ll have a power that’s in some twilight half-created state and won’t work.

You can fix that by encapsulating the entire process into a single function, like so:

Superpower* createSkyLaunch(ParticleSystem* particles)
{
 Superpower* power = new SkyLaunch();
 power->init(particles);
 return power;
}

With a little trickery like private constructors and friend classes, you can ensure this createSkylaunch() function is the only
function that can actually create powers. That way, you can’t forget any of the initialization stages.

Make the state static:

In the previous example, we were initializing each Superpower instance with a particle system.
That makes sense when every power needs its own unique state. But let’s say that the particle
system is a singleton, and every power will be sharing the same state.

In that case, we can make the state private to the base class and also make it static. The game
will still have to make sure that it initializes the state, but it only has to initialize the
Superpower class once for the entire game, and not each instance.

Keep in mind that this still has many of the problems of a singleton. You’ve got some state shared between lots and lots of
objects (all of the Superpower instances). The particle system is encapsulated, so it isn’t globally visible, which is good, but it
can still make reasoning about powers harder because they can all poke at the same object.

class Superpower
{
public:
 static void init(ParticleSystem* particles)
 {
 particles_ = particles;
 }

 // Sandbox method and other operations...

private:
 static ParticleSystem* particles_;
};

Note here that init() and particles_ are both static. As long as the game calls
Superpower::init() once early on, every power can access the particle system. At the same
time, Superpower instances can be created freely by calling the right derived class’s
constructor.

Even better, now that particles_ is a static variable, we don’t have to store it for each
instance of Superpower, so we’ve made the class use less memory.

Use a service locator:

The previous option requires that outside code specifically remembers to push in the state that
the base class needs before it needs it. That places the burden of initialization on the surrounding
code. Another option is to let the base class handle it by pulling in the state it needs. One way to
do that is by using the Service Locator pattern:

class Superpower
{

protected:
 void spawnParticles(ParticleType type, int count)
 {
 ParticleSystem& particles = Locator::getParticles();
 particles.spawn(type, count);
 }

 // Sandbox method and other operations...
};

Here, spawnParticles() needs a particle system. Instead of being given one by outside code,
it fetches one itself from the service locator.

See Also
When you apply the Update Method pattern, your update method will often also be a sandbox
method.

This pattern is a role reversal of the Template Method pattern. In both patterns, you implement a
method using a set of primitive operations. With Subclass Sandbox, the method is in the derived
class and the primitive operations are in the base class. With Template Method, the base class
has the method and the primitive operations are implemented by the derived class.

You can also consider this a variation on the Facade pattern. That pattern hides a number of
different systems behind a single simplified API. With Subclass Sandbox, the base class acts as
a facade that hides the entire game engine from the subclasses.

http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Facade_Pattern

Type Object

Intent
Allow the flexible creation of new “classes” by creating a single class, each instance of which
represents a different type of object.

Motivation
Imagine we’re working on a fantasy role-playing game. Our task is to write the code for the hordes of
vicious monsters that seek to slay our brave hero. Monsters have a bunch of different attributes:
health, attacks, graphics, sounds, etc., but for example purposes we’ll just worry about the first two.

Each monster in the game has a value for its current health. It starts out full, and each time the monster
is wounded, it diminishes. Monsters also have an attack string. When the monster attacks our hero,
that text will be shown to the user somehow. (We don’t care how here.)

The designers tell us that monsters come in a variety of different breeds, like “dragon” or “troll”.
Each breed describes a kind of monster that exists in the game, and there can be multiple monsters of
the same breed running around in the dungeon at the same time.

The breed determines a monster’s starting health — dragons start off with more than trolls, making
them harder to kill. It also determines the attack string — all monsters of the same breed attack the
same way.

The typical OOP answer

With that game design in mind, we fire up our text editor and start coding. According to the design, a
dragon is a kind of monster, a troll is another kind, and so on with the other breeds. Thinking object-
oriented, that leads us to a Monster base class:

This is the so-called “is-a” relationship. In conventional OOP thinking, since a dragon “is-a” monster, we model that by making Dragon
a subclass of Monster. As we’ll see, subclassing is only one way of enshrining a conceptual relation like that into code.

class Monster
{
public:
 virtual ~Monster() {}
 virtual const char* getAttack() = 0;

protected:
 Monster(int startingHealth)
 : health_(startingHealth)
 {}

private:
 int health_; // Current health.
};

The public getAttack() function lets the combat code get the string that should be displayed when
the monster attacks the hero. Each derived breed class will override this to provide a different
message.

The constructor is protected and takes the starting health for the monster. We’ll have derived classes
for each breed that provide their own public constructors that call this one, passing in the starting
health that is appropriate for that breed.

Now let’s see a couple of breed subclasses:

class Dragon : public Monster
{
public:
 Dragon() : Monster(230) {}

 virtual const char* getAttack()
 {
 return "The dragon breathes fire!";
 }
};

class Troll : public Monster
{
public:
 Troll() : Monster(48) {}

 virtual const char* getAttack()
 {
 return "The troll clubs you!";
 }
};

Exclamation points make everything more exciting!

Each class derived from Monster passes in the starting health and overrides getAttack() to return
the attack string for that breed. Everything works as expected, and before long, we’ve got our hero
running around slaying a variety of beasties. We keep slinging code, and before we know it, we’ve
got dozens of monster subclasses, from acidic slimes to zombie goats.

Then, strangely, things start to bog down. Our designers ultimately want to have hundreds of breeds,
and we find ourselves spending all of our time writing these little seven-line subclasses and
recompiling. It gets worse — the designers want to start tuning the breeds we’ve already coded. Our
formerly productive workday degenerates to:

1. Get email from designer asking to change health of troll from 48 to 52.

2. Check out and change Troll.h.

3. Recompile game.

4. Check in change.

5. Reply to email.

6. Repeat.

We spend the day frustrated because we’ve turned into data monkeys. Our designers are frustrated
because it takes them forever to get a simple number tuned. What we need is the ability to change
breed stats without having to recompile the whole game every time. Even better, we’d like designers
to be able to create and tune breeds without any programmer intervention at all.

A class for a class

At a very high level, the problem we’re trying to solve is pretty simple. We have a bunch of different
monsters in the game, and we want to share certain attributes between them. A horde of monsters are
beating on the hero, and we want some of them to use the same text for their attack. We define that by
saying that all of those monsters are the same “breed”, and that the breed determines the attack string.

We decided to implement this concept using inheritance since it lines up with our intuition of classes.
A dragon is a monster, and each dragon in the game is an instance of this dragon “class”. Defining
each breed as a subclass of an abstract base Monster class, and having each monster in the game be
an instance of that derived breed class mirrors that. We end up with a class hierarchy like this:

Here, the means “inherits from”.

Each instance of a monster in the game will be of one of the derived monster types. The more breeds
we have, the bigger the class hierarchy. That’s the problem of course: adding new breeds means
adding new code, and each breed has to be compiled in as its own type.

This works, but it isn’t the only option. We could also architect our code so that each monster has a
breed. Instead of subclassing Monster for each breed, we have a single Monster class and a single
Breed class:

Here, the means “is referenced by”.

That’s it. Two classes. Notice that there’s no inheritance at all. With this system, each monster in the
game is simply an instance of class Monster. The Breed class contains the information that’s shared
between all monsters of the same breed: starting health and the attack string.

To associate monsters with breeds, we give each Monster instance a reference to a Breed object
containing the information for that breed. To get the attack string, a monster just calls a method on its
breed. The Breed class essentially defines a monster’s “type”. Each breed instance is an object that
represents a different conceptual type, hence the name of the pattern: Type Object.

What’s especially powerful about this pattern is that now we can define new types of things without
complicating the codebase at all. We’ve essentially lifted a portion of the type system out of the hard-
coded class hierarchy into data we can define at runtime.

We can create hundreds of different breeds by instantiating more instances of Breed with different
values. If we create breeds by initializing them from data read from some configuration file, we have
the ability to define new types of monsters completely in data. So easy, a designer could do it!

The Pattern
Define a type object class and a typed object class. Each type object instance represents a different
logical type. Each typed object stores a reference to the type object that describes its type.

Instance-specific data is stored in the typed object instance, and data or behavior that should be
shared across all instances of the same conceptual type is stored in the type object. Objects
referencing the same type object will function as if they were the same type. This lets us share data
and behavior across a set of similar objects, much like subclassing lets us do, but without having a
fixed set of hard-coded subclasses.

When to Use It
This pattern is useful anytime you need to define a variety of different “kinds” of things, but baking the
kinds into your language’s type system is too rigid. In particular, it’s useful when either of these is
true:

You don’t know what types you will need up front. (For example, what if our game needed to
support downloading content that contained new breeds of monsters?)

You want to be able to modify or add new types without having to recompile or change code.

Keep in Mind
This pattern is about moving the definition of a “type” from the imperative but rigid language of code
into the more flexible but less behavioral world of objects in memory. The flexibility is good, but you
lose some things by hoisting your types into data.

The type objects have to be tracked manually

One advantage of using something like C++’s type system is that the compiler handles all of the
bookkeeping for the classes automatically. The data that defines each class is automatically compiled
into the static memory segment of the executable and just works.

With the Type Object pattern, we are now responsible for managing not only our monsters in memory,
but also their types — we have to make sure all of the breed objects are instantiated and kept in
memory as long as our monsters need them. Whenever we create a new monster, it’s up to us to
ensure that it’s correctly initialized with a reference to a valid breed.

We’ve freed ourselves from some of the limitations of the compiler, but the cost is that we have to re-
implement some of what it used to be doing for us.

Under the hood, C++ virtual methods are implemented using something called a “virtual function table”, or just “vtable”. A vtable is a
simple struct containing a set of function pointers, one for each virtual method in a class. There is one vtable in memory for each
class. Each instance of a class has a pointer to the vtable for its class.

When you call a virtual function, the code first looks up the vtable for the object, then it calls the function stored in the appropriate
function pointer in the table.

Sound familiar? The vtable is our breed object, and the pointer to the vtable is the reference the monster holds to its breed. C++
classes are the Type Object pattern applied to C, handled automatically by the compiler.

It’s harder to define behavior for each type

With subclassing, you can override a method and do whatever you want to — calculate values
procedurally, call other code, etc. The sky is the limit. We could define a monster subclass whose
attack string changed based on the phase of the moon if we wanted to. (Handy for werewolves, I
suppose.)

When we use the Type Object pattern instead, we replace an overridden method with a member
variable. Instead of having monster subclasses that override a method to calculate an attack string
using different code, we have a breed object that stores an attack string in a different variable.

This makes it very easy to use type objects to define type-specific data, but hard to define type-
specific behavior. If, for example, different breeds of monster needed to use different AI algorithms,
using this pattern becomes more challenging.

There are a couple of ways we can get around this limitation. A simple solution is to have a fixed set
of pre-defined behaviors and then use data in the type object to simply select one of them. For
example, let’s say our monster AI will always be either “stand still”, “chase hero”, or “whimper and
cower in fear” (hey, they can’t all be mighty dragons). We can define functions to implement each of
those behaviors. Then, we can associate an AI algorithm with a breed by having it store a pointer to
the appropriate function.

Sound familiar again? Now we’re back to really implementing vtables in our type objects.

Another more powerful solution is to actually support defining behavior completely in data. The
Interpreter and Bytecode patterns both let us build objects that represent behavior. If we read in a
data file and use that to create a data structure for one of these patterns, we’ve moved the behavior’s
definition completely out of code and into content.

Over time, games are getting more data-driven. Hardware gets more powerful, and we find ourselves limited more by how much
content we can author than how hard we can push the hardware. With a 64K cartridge, the challenge was cramming the gameplay
into it. With a double-sided DVD, the challenge is filling it with gameplay.

Scripting languages and other higher-level ways of defining game behavior can give us a much needed productivity boost, at the
expense of less optimal runtime performance. Since hardware keeps getting better but our brainpower doesn’t, that trade-off starts to
make more and more sense.

http://c2.com/cgi-bin/wiki?InterpreterPattern

Sample Code
For our first pass at an implementation, let’s start simple and build the basic system described in the
motivation section. We’ll start with the Breed class:

class Breed
{
public:
 Breed(int health, const char* attack)
 : health_(health),
 attack_(attack)
 {}

 int getHealth() { return health_; }
 const char* getAttack() { return attack_; }

private:
 int health_; // Starting health.
 const char* attack_;
};

Very simple. It’s basically just a container for two data fields: the starting health and the attack string.
Let’s see how monsters use it:

class Monster
{
public:
 Monster(Breed& breed)
 : health_(breed.getHealth()),
 breed_(breed)
 {}

 const char* getAttack()
 {
 return breed_.getAttack();
 }

private:
 int health_; // Current health.
 Breed& breed_;
};

When we construct a monster, we give it a reference to a breed object. This defines the monster’s
breed instead of the subclasses we were previously using. In the constructor, Monster uses the breed
to determine its starting health. To get the attack string, the monster simply forwards the call to its
breed.

This very simple chunk of code is the core idea of the pattern. Everything from here on out is bonus.

Making type objects more like types: constructors

With what we have now, we construct a monster directly and are responsible for passing in its breed.
This is a bit backwards from how regular objects are instantiated in most OOP languages — we
don’t usually allocate a blank chunk of memory and then give it its class. Instead, we call a
constructor function on the class itself, and it’s responsible for giving us a new instance.

We can apply this same pattern to our type objects:

class Breed
{
public:
 Monster* newMonster() { return new Monster(*this); }

 // Previous Breed code...
};

“Pattern” is the right word here. What we’re talking about is one of the classic patterns from Design Patterns: Factory Method.

In some languages, this pattern is applied for constructing all objects. In Ruby, Smalltalk, Objective-C, and other languages where
classes are objects, you construct new instances by calling a method on the class object itself.

And the class that uses them:

class Monster
{
 friend class Breed;

public:
 const char* getAttack() { return breed_.getAttack(); }

private:
 Monster(Breed& breed)
 : health_(breed.getHealth()),
 breed_(breed)
 {}

 int health_; // Current health.
 Breed& breed_;
};

The key difference is the newMonster() function in Breed. That’s our “constructor” factory method.
With our original implementation, creating a monster looked like:

There’s another minor difference here. Because the sample code is in C++, we can use a handy little feature: friend classes.

We’ve made Monster’s constructor private, which prevents anyone from calling it directly. Friend classes sidestep that restriction so
Breed can still access it. This means the only way to create monsters is by going through newMonster().

Monster* monster = new Monster(someBreed);

After our changes, it’s like this:

Monster* monster = someBreed.newMonster();

So, why do this? There are two steps to creating an object: allocation and initialization. Monster’s
constructor lets us do all of the initialization we need. In our example, that’s only storing the breed,
but a full game would be loading graphics, initializing the monster’s AI, and doing other set-up work.

However, that all happens after allocation. We’ve already got a chunk of memory to put our monster
into before its constructor is called. In games, we often want to control that aspect of object creation
too: we’ll typically use things like custom allocators or the Object Pool pattern to control where in
memory our objects end up.

Defining a “constructor” function in Breed gives us a place to put that logic. Instead of simply calling

http://c2.com/cgi/wiki?FactoryMethodPattern

new, the newMonster() function can pull the memory from a pool or custom heap before passing
control off to Monster for initialization. By putting this logic inside Breed, in the only function that
has the ability to create monsters, we ensure that all monsters go through the memory management
scheme we want.

Sharing data through inheritance

What we have so far is a perfectly serviceable type object system, but it’s pretty basic. Our game will
eventually have hundreds of different breeds, each with dozens of attributes. If a designer wants to
tune all of the thirty different breeds of troll to make them a little stronger, she’s got a lot of tedious
data entry ahead of her.

What would help is the ability to share attributes across multiple breeds in the same way that breeds
let us share attributes across multiple monsters. Just like we did with our original OOP solution, we
can solve this using inheritance. Only, this time, instead of using our language’s inheritance
mechanism, we’ll implement it ourselves within our type objects.

To keep things simple, we’ll only support single inheritance. In the same way that a class can have a
parent base class, we’ll allow a breed to have a parent breed:

class Breed
{
public:
 Breed(Breed* parent, int health, const char* attack)
 : parent_(parent),
 health_(health),
 attack_(attack)
 {}

 int getHealth();
 const char* getAttack();

private:
 Breed* parent_;
 int health_; // Starting health.
 const char* attack_;
};

When we construct a breed, we give it a parent that it inherits from. We can pass in NULL for a base
breed that has no ancestors.

To make this useful, a child breed needs to control which attributes are inherited from its parent and
which attributes it overrides and specifies itself. For our example system, we’ll say that a breed
overrides the monster’s health by having a non-zero value and overrides the attack by having a
non-NULL string. Otherwise, the attribute will be inherited from its parent.

There are two ways we can implement this. One is to handle the delegation dynamically every time
the attribute is requested, like this:

int Breed::getHealth()
{
 // Override.

 if (health_ != 0 || parent_ == NULL) return health_;

 // Inherit.
 return parent_->getHealth();
}

const char* Breed::getAttack()
{
 // Override.
 if (attack_ != NULL || parent_ == NULL) return attack_;

 // Inherit.
 return parent_->getAttack();
}

This has the advantage of doing the right thing if a breed is modified at runtime to no longer override,
or no longer inherit some attribute. On the other hand, it takes a bit more memory (it has to retain a
pointer to its parent), and it’s slower. It has to walk the inheritance chain each time you look up an
attribute.

If we can rely on a breed’s attributes not changing, a faster solution is to apply the inheritance at
construction time. This is called “copy-down” delegation because we copy inherited attributes down
into the derived type when it’s created. It looks like this:

Breed(Breed* parent, int health, const char* attack)
: health_(health),
 attack_(attack)
{
 // Inherit non-overridden attributes.
 if (parent != NULL)
 {
 if (health == 0) health_ = parent->getHealth();
 if (attack == NULL) attack_ = parent->getAttack();
 }
}

Note that we no longer need a field for the parent breed. Once the constructor is done, we can forget
the parent since we’ve already copied all of its attributes in. To access a breed’s attribute, now we
just return the field:

int getHealth() { return health_; }
const char* getAttack() { return attack_; }

Nice and fast!

Let’s say our game engine is set up to create the breeds by loading a JSON file that defines them. It
could look like:

{
 "Troll": {
 "health": 25,
 "attack": "The troll hits you!"
 },
 "Troll Archer": {
 "parent": "Troll",
 "health": 0,
 "attack": "The troll archer fires an arrow!"
 },
 "Troll Wizard": {
 "parent": "Troll",

 "health": 0,
 "attack": "The troll wizard casts a spell on you!"
 }
}

We’d have a chunk of code that reads each breed entry and instantiates a new breed instance with its
data. As you can see from the "parent": "Troll" fields, the Troll Archer and Troll Wizard
breeds inherit from the base Troll breed.

Since both of them have zero for their health, they’ll inherit it from the base Troll breed instead. This
means now our designer can tune the health in Troll and all three breeds will be updated. As the
number of breeds and the number of different attributes each breed has increase, this can be a big
time-saver. Now, with a pretty small chunk of code, we have an open-ended system that puts control
in our designers’ hands and makes the best use of their time. Meanwhile, we can get back to coding
other features.

Design Decisions
The Type Object pattern lets us build a type system as if we were designing our own programming
language. The design space is wide open, and we can do all sorts of interesting stuff.

In practice, a few things curtail our fancy. Time and maintainability will discourage us from anything
particularly complicated. More importantly, whatever type object system we design, our users (often
non-programmers) will need to be able to easily understand it. The simpler we can make it, the more
usable it will be. So what we’ll cover here is the well-trodden design space, and we’ll leave the far
reaches for the academics and explorers.

Is the type object encapsulated or exposed?

In our sample implementation, Monster has a reference to a breed, but it doesn’t publicly expose it.
Outside code can’t get directly at the monster’s breed. From the codebase’s perspective, monsters are
essentially typeless, and the fact that they have breeds is an implementation detail.

We can easily change this and allow Monster to return its Breed:

class Monster
{
public:
 Breed& getBreed() { return breed_; }

 // Existing code...
};

As in other examples in this book, we’re following a convention where we return objects by reference instead of pointer to indicate to
users that NULL will never be returned.

Doing this changes the design of Monster. The fact that all monsters have breeds is now a publicly
visible part of its API. There are benefits with either choice.

If the type object is encapsulated:

The complexity of the Type Object pattern is hidden from the rest of the codebase. It
becomes an implementation detail that only the typed object has to worry about.

The typed object can selectively override behavior from the type object. Let’s say we
wanted to change the monster’s attack string when it’s near death. Since the attack string is
always accessed through Monster, we have a convenient place to put that code:

const char* Monster::getAttack()
{
 if (health_ < LOW_HEALTH)
 {
 return "The monster flails weakly.";
 }

 return breed_.getAttack();

}

If outside code was calling getAttack() directly on the breed, we wouldn’t have the
opportunity to insert that logic.

We have to write forwarding methods for everything the type object exposes. This is the
tedious part of this design. If our type object class has a large number of methods, the
object class will have to have its own methods for each of the ones that we want to be
publicly visible.

If the type object is exposed:

Outside code can interact with type objects without having an instance of the typed
class. If the type object is encapsulated, there’s no way to use it without also having a typed
object that wraps it. This prevents us, for example, from using our constructor pattern
where new monsters are created by calling a method on the breed. If users can’t get to
breeds directly, they wouldn’t be able to call it.

The type object is now part of the object’s public API. In general, narrow interfaces are
easier to maintain than wide ones — the less you expose to the rest of the codebase, the
less complexity and maintenance you have to deal with. By exposing the type object, we
widen the object’s API to include everything the type object provides.

How are typed objects created?

With this pattern, each “object” is now a pair of objects: the main object and the type object it uses.
So how do we create and bind the two together?

Construct the object and pass in its type object:

Outside code can control allocation. Since the calling code is constructing both objects
itself, it can control where in memory that occurs. If we want our objects to be usable in a
variety of different memory scenarios (different allocators, on the stack, etc.) this gives us
the flexibility to do that.

Call a “constructor” function on the type object:

The type object controls memory allocation. This is the other side of the coin. If we don’t
want users to choose where in memory our objects are created, requiring them to go through
a factory method on the type object gives us control over that. This can be useful if we want
to ensure all of our objects come from a certain object pool or other memory allocator.

Can the type change?

So far, we’ve presumed that once an object is created and bound to its type object that that binding

will never change. The type an object is created with is the type it dies with. This isn’t strictly
necessary. We could allow an object to change its type over time.

Let’s look back at our example. When a monster dies, the designers tell us sometimes they want its
corpse to become a reanimated zombie. We could implement this by spawning a new monster with a
zombie breed when a monster dies, but another option is to simply get the existing monster and change
its breed to a zombie one.

If the type doesn’t change:

It’s simpler both to code and to understand. At a conceptual level, “type” is something
most people probably will not expect to change. This codifies that assumption.

It’s easier to debug. If we’re trying to track down a bug where a monster gets into some
weird state, it simplifies our job if we can take for granted that the breed we’re looking at
now is the breed the monster has always had.

If the type can change:

There’s less object creation. In our example, if the type can’t change, we’ll be forced to
burn CPU cycles creating a new zombie monster, copying over any attributes from the
original monster that need to be preserved, and then deleting it. If we can change the type,
all that work gets replaced by a simple assignment.

We need to be careful that assumptions are met. There’s a fairly tight coupling between an
object and its type. For example, a breed might assume that a monster’s current health is
never above the starting health that comes from the breed.

If we allow the breed to change, we need to make sure that the new type’s requirements are
met by the existing object. When we change the type, we will probably need to execute
some validation code to make sure the object is now in a state that makes sense for the new
type.

What kind of inheritance is supported?

No inheritance:

It’s simple. Simplest is often best. If you don’t have a ton of data that needs sharing
between your type objects, why make things hard on yourself?

It can lead to duplicated effort. I’ve yet to see an authoring system where designers didn’t
want some kind of inheritance. When you’ve got fifty different kinds of elves, having to tune
their health by changing the same number in fifty different places sucks.

Single inheritance:

It’s still relatively simple. It’s easy to implement, but, more importantly, it’s also pretty
easy to understand. If non-technical users are going to be working with the system, the
fewer moving parts, the better. There’s a reason a lot of programming languages only
support single inheritance. It seems to be a sweet spot between power and simplicity.

Looking up attributes is slower. To get a given piece of data from a type object, we might
need to walk up the inheritance chain to find the type that ultimately decides the value. If
we’re in performance-critical code, we may not want to spend time on this.

Multiple inheritance:

Almost all data duplication can be avoided. With a good multiple inheritance system,
users can build a hierarchy for their type objects that has almost no redundancy. When it
comes time to tune numbers, we can avoid a lot of copy and paste.

It’s complex. Unfortunately, the benefits for this seem to be more theoretical than practical.
Multiple inheritance is hard to understand and reason about.

If our Zombie Dragon type inherits both from Zombie and Dragon, which attributes come
from Zombie and which come from Dragon? In order to use the system, users will need to
understand how the inheritance graph is traversed and have the foresight to design an
intelligent hierarchy.

Most C++ coding standards I see today tend to ban multiple inheritance, and Java and C#
lack it completely. That’s an acknowledgement of a sad fact: it’s so hard to get it right that
it’s often best to not use it at all. While it’s worth thinking about, it’s rare that you’ll want
to use multiple inheritance for the type objects in your games. As always, simpler is better.

See Also
The high-level problem this pattern addresses is sharing data and behavior between several
objects. Another pattern that addresses the same problem in a different way is Prototype.

Type Object is a close cousin to Flyweight. Both let you share data across instances. With
Flyweight, the intent is on saving memory, and the shared data may not represent any conceptual
“type” of object. With the Type Object pattern, the focus is on organization and flexibility.

There’s a lot of similarity between this pattern and the State pattern. Both patterns let an object
delegate part of what defines itself to another object. With a type object, we’re usually
delegating what the object is: invariant data that broadly describes the object. With State, we
delegate what an object is right now: temporal data that describes an object’s current
configuration.

When we discussed having an object change its type, you can look at that as having our Type
Object serve double duty as a State too.

Decoupling Patterns
Once you get the hang of a programming language, writing code to do what you want is actually pretty
easy. What’s hard is writing code that’s easy to adapt when your requirements change. Rarely do we
have the luxury of a perfect feature set before we’ve fired up our editor.

A powerful tool we have for making change easier is decoupling. When we say two pieces of code
are “decoupled”, we mean a change in one usually doesn’t require a change in the other. When you
change some feature in your game, the fewer places in code you have to touch, the easier it is.

Components decouple different domains in your game from each other within a single entity that has
aspects of all of them. Event Queues decouple two objects communicating with each other, both
statically and in time. Service Locators let code access a facility without being bound to the code that
provides it.

The Patterns
Component
Event Queue
Service Locator

Component

Intent
Allow a single entity to span multiple domains without coupling the domains to each other.

Motivation
Let’s say we’re building a platformer. The Italian plumber demographic is covered, so ours will star
a Danish baker, Bjørn. It stands to reason that we’ll have a class representing our friendly pastry chef,
and it will contain everything he does in the game.

Brilliant game ideas like this are why I’m a programmer and not a designer.

Since the player controls him, that means reading controller input and translating that input into
motion. And, of course, he needs to interact with the level, so some physics and collision go in there.
Once that’s done, he’s got to show up on screen, so toss in animation and rendering. He’ll probably
play some sounds too.

Hold on a minute; this is getting out of control. Software Architecture 101 tells us that different
domains in a program should be kept isolated from each other. If we’re making a word processor, the
code that handles printing shouldn’t be affected by the code that loads and saves documents. A game
doesn’t have the same domains as a business app, but the rule still applies.

As much as possible, we don’t want AI, physics, rendering, sound and other domains to know about
each other, but now we’ve got all of that crammed into one class. We’ve seen where this road leads
to: a 5,000-line dumping ground source file so big that only the bravest ninja coders on your team
even dare to go in there.

This is great job security for the few who can tame it, but it’s hell for the rest of us. A class that big
means even the most seemingly trivial changes can have far-reaching implications. Soon, the class
collects bugs faster than it collects features.

The Gordian knot

Even worse than the simple scale problem is the coupling one. All of the different systems in our
game have been tied into a giant knotted ball of code like:

if (collidingWithFloor() && (getRenderState() != INVISIBLE))
{
 playSound(HIT_FLOOR);
}

Any programmer trying to make a change in code like that will need to know something about physics,
graphics, and sound just to make sure they don’t break anything.

While coupling like this sucks in any game, it’s even worse on modern games that use concurrency. On multi-core hardware, it’s vital
that code is running on multiple threads simultaneously. One common way to split a game across threads is along domain boundaries
— run AI on one core, sound on another, rendering on a third, etc.

Once you do that, it’s critical that those domains stay decoupled in order to avoid deadlocks or other fiendish concurrency bugs.
Having a single class with an UpdateSounds() method that must be called from one thread and a RenderGraphics() method that
must be called from another is begging for those kinds of bugs to happen.

These two problems compound each other; the class touches so many domains that every programmer
will have to work on it, but it’s so huge that doing so is a nightmare. If it gets bad enough, coders will
start putting hacks in other parts of the codebase just to stay out of the hairball that this Bjorn class
has become.

Cutting the knot

We can solve this like Alexander the Great — with a sword. We’ll take our monolithic Bjorn class
and slice it into separate parts along domain boundaries. For example, we’ll take all of the code for
handling user input and move it into a separate InputComponent class. Bjorn will then own an
instance of this component. We’ll repeat this process for each of the domains that Bjorn touches.

When we’re done, we’ll have moved almost everything out of Bjorn. All that remains is a thin shell
that binds the components together. We’ve solved our huge class problem by simply dividing it up
into multiple smaller classes, but we’ve accomplished more than just that.

Loose ends

Our component classes are now decoupled. Even though Bjorn has a PhysicsComponent and a
GraphicsComponent, the two don’t know about each other. This means the person working on
physics can modify their component without needing to know anything about graphics and vice versa.

In practice, the components will need to have some interaction between themselves. For example, the
AI component may need to tell the physics component where Bjørn is trying to go. However, we can
restrict this to the components that do need to talk instead of just tossing them all in the same playpen
together.

Tying back together

Another feature of this design is that the components are now reusable packages. So far, we’ve
focused on our baker, but let’s consider a couple of other kinds of objects in our game world.
Decorations are things in the world the player sees but doesn’t interact with: bushes, debris and other
visual detail. Props are like decorations but can be touched: boxes, boulders, and trees. Zones are the
opposite of decorations — invisible but interactive. They’re useful for things like triggering a
cutscene when Bjørn enters an area.

When object-oriented programming first hit the scene, inheritance was the shiniest tool in its toolbox. It was considered the ultimate
code-reuse hammer, and coders swung it often. Since then, we’ve learned the hard way that it’s a heavy hammer indeed. Inheritance
has its uses, but it’s often too cumbersome for simple code reuse.

Instead, the growing trend in software design is to use composition instead of inheritance when possible. Instead of sharing code
between two classes by having them inherit from the same class, we do so by having them both own an instance of the same class.

Now, consider how we’d set up an inheritance hierarchy for those classes if we weren’t using

components. A first pass might look like:

We have a base GameObject class that has common stuff like position and orientation. Zone inherits
from that and adds collision detection. Likewise, Decoration inherits from GameObject and adds
rendering. Prop inherits from Zone, so it can reuse the collision code. However, Prop can’t also
inherit from Decoration to reuse the rendering code without running into the Deadly Diamond.

The “Deadly Diamond” occurs in class hierarchies with multiple inheritance where there are two different paths to the same base
class. The pain that causes is a bit out of the scope of this book, but understand that they named it “deadly” for a reason.

We could flip things around so that Prop inherits from Decoration, but then we end up having to
duplicate the collision code. Either way, there’s no clean way to reuse the collision and rendering
code between the classes that need it without resorting to multiple inheritance. The only other option
is to push everything up into GameObject, but then Zone is wasting memory on rendering data it
doesn’t need and Decoration is doing the same with physics.

Now, let’s try it with components. Our subclasses disappear completely. Instead, we have a single
GameObject class and two component classes: PhysicsComponent and GraphicsComponent. A
decoration is simply a GameObject with a GraphicsComponent but no PhysicsComponent. A zone
is the opposite, and a prop has both components. No code duplication, no multiple inheritance, and
only three classes instead of four.

A restaurant menu is a good analogy. If each entity is a monolithic class, it’s like you can only order combos. We need to have a
separate class for each possible combination of features. To satisfy every customer, we would need dozens of combos.

Components are à la carte dining — each customer can select just the dishes they want, and the menu is a list of the dishes they can
choose from.

Components are basically plug-and-play for objects. They let us build complex entities with rich
behavior by plugging different reusable component objects into sockets on the entity. Think software
Voltron.

The Pattern
A single entity spans multiple domains. To keep the domains isolated, the code for each is placed in
its own component class. The entity is reduced to a simple container of components.

“Component”, like “Object”, is one of those words that means everything and nothing in programming. Because of that, it’s been used
to describe a few concepts. In business software, there’s a “Component” design pattern that describes decoupled services that
communicate over the web.

I tried to find a different name for this unrelated pattern found in games, but “Component” seems to be the most common term for it.
Since design patterns are about documenting existing practices, I don’t have the luxury of coining a new term. So, following in the
footsteps of XNA, Delta3D, and others, “Component” it is.

When to Use It
Components are most commonly found within the core class that defines the entities in a game, but
they may be useful in other places as well. This pattern can be put to good use when any of these are
true:

You have a class that touches multiple domains which you want to keep decoupled from each
other.

A class is getting massive and hard to work with.

You want to be able to define a variety of objects that share different capabilities, but using
inheritance doesn’t let you pick the parts you want to reuse precisely enough.

Keep in Mind
The Component pattern adds a good bit of complexity over simply making a class and putting code in
it. Each conceptual “object” becomes a cluster of objects that must be instantiated, initialized, and
correctly wired together. Communication between the different components becomes more
challenging, and controlling how they occupy memory is more complex.

For a large codebase, this complexity may be worth it for the decoupling and code reuse it enables,
but take care to ensure you aren’t over-engineering a “solution” to a non-existent problem before
applying this pattern.

Another consequence of using components is that you often have to hop through a level of indirection
to get anything done. Given the container object, first you have to get the component you want, then
you can do what you need. In performance-critical inner loops, this pointer following may lead to
poor performance.

There’s a flip side to this coin. The Component pattern can often improve performance and cache coherence. Components make it
easier to use the Data Locality pattern to organize your data in the order that the CPU wants it.

Sample Code
One of the biggest challenges for me in writing this book is figuring out how to isolate each pattern.
Many design patterns exist to contain code that itself isn’t part of the pattern. In order to distill the
pattern down to its essence, I try to cut as much of that out as possible, but at some point it becomes a
bit like explaining how to organize a closet without showing any clothes.

The Component pattern is a particularly hard one. You can’t get a real feel for it without seeing some
code for each of the domains that it decouples, so I’ll have to sketch in a bit more of Bjørn’s code
than I’d like. The pattern is really only the component classes themselves, but the code in them should
help clarify what the classes are for. It’s fake code — it calls into other classes that aren’t presented
here — but it should give you an idea of what we’re going for.

A monolithic class

To get a clearer picture of how this pattern is applied, we’ll start by showing a monolithic Bjorn
class that does everything we need but doesn’t use this pattern:

I should point out that using the actual name of the character in the codebase is usually a bad idea. The marketing department has an
annoying habit of demanding name changes days before you ship. “Focus tests show males between 11 and 15 respond negatively to
‘Bjørn’. Use ‘Sven’ instead.”

This is why many software projects use internal-only codenames. Well, that and because it’s more fun to tell people you’re working
on “Big Electric Cat” than just “the next version of Photoshop.”

class Bjorn
{
public:
 Bjorn()
 : velocity_(0),
 x_(0), y_(0)
 {}

 void update(World& world, Graphics& graphics);

private:
 static const int WALK_ACCELERATION = 1;

 int velocity_;
 int x_, y_;

 Volume volume_;

 Sprite spriteStand_;
 Sprite spriteWalkLeft_;
 Sprite spriteWalkRight_;
};

Bjorn has an update() method that gets called once per frame by the game:

void Bjorn::update(World& world, Graphics& graphics)
{
 // Apply user input to hero's velocity.
 switch (Controller::getJoystickDirection())
 {

 case DIR_LEFT:
 velocity_ -= WALK_ACCELERATION;
 break;

 case DIR_RIGHT:
 velocity_ += WALK_ACCELERATION;
 break;
 }

 // Modify position by velocity.
 x_ += velocity_;
 world.resolveCollision(volume_, x_, y_, velocity_);

 // Draw the appropriate sprite.
 Sprite* sprite = &spriteStand_;
 if (velocity_ < 0)
 {
 sprite = &spriteWalkLeft_;
 }
 else if (velocity_ > 0)
 {
 sprite = &spriteWalkRight_;
 }

 graphics.draw(*sprite, x_, y_);
}

It reads the joystick to determine how to accelerate the baker. Then it resolves its new position with
the physics engine. Finally, it draws Bjørn onto the screen.

The sample implementation here is trivially simple. There’s no gravity, animation, or any of the
dozens of other details that make a character fun to play. Even so, we can see that we’ve got a single
function that several different coders on our team will probably have to spend time in, and it’s
starting to get a bit messy. Imagine this scaled up to a thousand lines and you can get an idea of how
painful it can become.

Splitting out a domain

Starting with one domain, let’s pull a piece out of Bjorn and push it into a separate component class.
We’ll start with the first domain that gets processed: input. The first thing Bjorn does is read in user
input and adjust his velocity based on it. Let’s move that logic out into a separate class:

class InputComponent
{
public:
 void update(Bjorn& bjorn)
 {
 switch (Controller::getJoystickDirection())
 {
 case DIR_LEFT:
 bjorn.velocity -= WALK_ACCELERATION;
 break;

 case DIR_RIGHT:
 bjorn.velocity += WALK_ACCELERATION;
 break;
 }
 }

private:

 static const int WALK_ACCELERATION = 1;
};

Pretty simple. We’ve taken the first section of Bjorn’s update() method and put it into this class.
The changes to Bjorn are also straightforward:

class Bjorn
{
public:
 int velocity;
 int x, y;

 void update(World& world, Graphics& graphics)
 {
 input_.update(*this);

 // Modify position by velocity.
 x += velocity;
 world.resolveCollision(volume_, x, y, velocity);

 // Draw the appropriate sprite.
 Sprite* sprite = &spriteStand_;
 if (velocity < 0)
 {
 sprite = &spriteWalkLeft_;
 }
 else if (velocity > 0)
 {
 sprite = &spriteWalkRight_;
 }

 graphics.draw(*sprite, x, y);
 }

private:
 InputComponent input_;

 Volume volume_;

 Sprite spriteStand_;
 Sprite spriteWalkLeft_;
 Sprite spriteWalkRight_;
};

Bjorn now owns an InputComponent object. Where before he was handling user input directly in
the update() method, now he delegates to the component:

input_.update(*this);

We’ve only started, but already we’ve gotten rid of some coupling — the main Bjorn class no longer
has any reference to Controller. This will come in handy later.

Splitting out the rest

Now, let’s go ahead and do the same cut-and-paste job on the physics and graphics code. Here’s our
new PhysicsComponent:

class PhysicsComponent
{
public:

 void update(Bjorn& bjorn, World& world)
 {
 bjorn.x += bjorn.velocity;
 world.resolveCollision(volume_,
 bjorn.x, bjorn.y, bjorn.velocity);
 }

private:
 Volume volume_;
};

In addition to moving the physics behavior out of the main Bjorn class, you can see we’ve also
moved out the data too: The Volume object is now owned by the component.

Last but not least, here’s where the rendering code lives now:

class GraphicsComponent
{
public:
 void update(Bjorn& bjorn, Graphics& graphics)
 {
 Sprite* sprite = &spriteStand_;
 if (bjorn.velocity < 0)
 {
 sprite = &spriteWalkLeft_;
 }
 else if (bjorn.velocity > 0)
 {
 sprite = &spriteWalkRight_;
 }

 graphics.draw(*sprite, bjorn.x, bjorn.y);
 }

private:
 Sprite spriteStand_;
 Sprite spriteWalkLeft_;
 Sprite spriteWalkRight_;
};

We’ve yanked almost everything out, so what’s left of our humble pastry chef? Not much:

class Bjorn
{
public:
 int velocity;
 int x, y;

 void update(World& world, Graphics& graphics)
 {
 input_.update(*this);
 physics_.update(*this, world);
 graphics_.update(*this, graphics);
 }

private:
 InputComponent input_;
 PhysicsComponent physics_;
 GraphicsComponent graphics_;
};

The Bjorn class now basically does two things: it holds the set of components that actually define it,
and it holds the state that is shared across multiple domains. Position and velocity are still in the core

Bjorn class for two reasons. First, they are “pan-domain” state — almost every component will
make use of them, so it isn’t clear which component should own them if we did want to push them
down.

Secondly, and more importantly, it gives us an easy way for the components to communicate without
being coupled to each other. Let’s see if we can put that to use.

Robo-Bjørn

So far, we’ve pushed our behavior out to separate component classes, but we haven’t abstracted the
behavior out. Bjorn still knows the exact concrete classes where his behavior is defined. Let’s
change that.

We’ll take our component for handling user input and hide it behind an interface. We’ll turn
InputComponent into an abstract base class:

class InputComponent
{
public:
 virtual ~InputComponent() {}
 virtual void update(Bjorn& bjorn) = 0;
};

Then, we’ll take our existing user input handling code and push it down into a class that implements
that interface:

class PlayerInputComponent : public InputComponent
{
public:
 virtual void update(Bjorn& bjorn)
 {
 switch (Controller::getJoystickDirection())
 {
 case DIR_LEFT:
 bjorn.velocity -= WALK_ACCELERATION;
 break;

 case DIR_RIGHT:
 bjorn.velocity += WALK_ACCELERATION;
 break;
 }
 }

private:
 static const int WALK_ACCELERATION = 1;
};

We’ll change Bjorn to hold a pointer to the input component instead of having an inline instance:

class Bjorn
{
public:
 int velocity;
 int x, y;

 Bjorn(InputComponent* input)
 : input_(input)

 {}

 void update(World& world, Graphics& graphics)
 {
 input_->update(*this);
 physics_.update(*this, world);
 graphics_.update(*this, graphics);
 }

private:
 InputComponent* input_;
 PhysicsComponent physics_;
 GraphicsComponent graphics_;
};

Now, when we instantiate Bjorn, we can pass in an input component for it to use, like so:

Bjorn* bjorn = new Bjorn(new PlayerInputComponent());

This instance can be any concrete type that implements our abstract InputComponent interface. We
pay a price for this — update() is now a virtual method call, which is a little slower. What do we
get in return for this cost?

Most consoles require a game to support “demo mode.” If the player sits at the main menu without
doing anything, the game will start playing automatically, with the computer standing in for the player.
This keeps the game from burning the main menu into your TV and also makes the game look nicer
when it’s running on a kiosk in a store.

Hiding the input component class behind an interface lets us get that working. We already have our
concrete PlayerInputComponent that’s normally used when playing the game. Now, let’s make
another one:

class DemoInputComponent : public InputComponent
{
public:
 virtual void update(Bjorn& bjorn)
 {
 // AI to automatically control Bjorn...
 }
};

When the game goes into demo mode, instead of constructing Bjørn like we did earlier, we’ll wire
him up with our new component:

Bjorn* bjorn = new Bjorn(new DemoInputComponent());

And now, just by swapping out a component, we’ve got a fully functioning computer-controlled
player for demo mode. We’re able to reuse all of the other code for Bjørn — physics and graphics
don’t even know there’s a difference. Maybe I’m a bit strange, but it’s stuff like this that gets me up in
the morning.

That, and coffee. Sweet, steaming hot coffee.

No Bjørn at all?

If you look at our Bjorn class now, you’ll notice there’s nothing really “Bjørn” about it — it’s just a
component bag. In fact, it looks like a pretty good candidate for a base “game object” class that we
can use for every object in the game. All we need to do is pass in all the components, and we can
build any kind of object by picking and choosing parts like Dr. Frankenstein.

Let’s take our two remaining concrete components — physics and graphics — and hide them behind
interfaces like we did with input:

class PhysicsComponent
{
public:
 virtual ~PhysicsComponent() {}
 virtual void update(GameObject& obj, World& world) = 0;
};

class GraphicsComponent
{
public:
 virtual ~GraphicsComponent() {}
 virtual void update(GameObject& obj, Graphics& graphics) = 0;
};

Then we re-christen Bjorn into a generic GameObject class that uses those interfaces:

class GameObject
{
public:
 int velocity;
 int x, y;

 GameObject(InputComponent* input,
 PhysicsComponent* physics,
 GraphicsComponent* graphics)
 : input_(input),
 physics_(physics),
 graphics_(graphics)
 {}

 void update(World& world, Graphics& graphics)
 {
 input_->update(*this);
 physics_->update(*this, world);
 graphics_->update(*this, graphics);
 }

private:
 InputComponent* input_;
 PhysicsComponent* physics_;
 GraphicsComponent* graphics_;
};

Some component systems take this even further. Instead of a GameObject that contains its components, the game entity is just an ID,
a number. Then, you maintain separate collections of components where each one knows the ID of the entity its attached to.

These entity component systems take decoupling components to the extreme and let you add new components to an entity without the
entity even knowing. The Data Locality chapter has more details.

Our existing concrete classes will get renamed and implement those interfaces:

class BjornPhysicsComponent : public PhysicsComponent
{
public:

http://en.wikipedia.org/wiki/Entity_component_system

 virtual void update(GameObject& obj, World& world)
 {
 // Physics code...
 }
};

class BjornGraphicsComponent : public GraphicsComponent
{
public:
 virtual void update(GameObject& obj, Graphics& graphics)
 {
 // Graphics code...
 }
};

And now we can build an object that has all of Bjørn’s original behavior without having to actually
create a class for him, just like this:

GameObject* createBjorn()
{
 return new GameObject(new PlayerInputComponent(),
 new BjornPhysicsComponent(),
 new BjornGraphicsComponent());
}

This createBjorn() function is, of course, an example of the classic Gang of Four Factory Method pattern.

By defining other functions that instantiate GameObjects with different components, we can create all
of the different kinds of objects our game needs.

http://c2.com/cgi/wiki?FactoryMethod

Design Decisions
The most important design question you’ll need to answer with this pattern is, “What set of
components do I need?” The answer there is going to depend on the needs and genre of your game.
The bigger and more complex your engine is, the more finely you’ll likely want to slice your
components.

Beyond that, there are a couple of more specific options to consider:

How does the object get its components?

Once we’ve split up our monolithic object into a few separate component parts, we have to decide
who puts the parts back together.

If the object creates its own components:

It ensures that the object always has the components it needs. You never have to worry
about someone forgetting to wire up the right components to the object and breaking the
game. The container object itself takes care of it for you.

It’s harder to reconfigure the object. One of the powerful features of this pattern is that it
lets you build new kinds of objects simply by recombining components. If our object
always wires itself with the same set of hard-coded components, we aren’t taking
advantage of that flexibility.

If outside code provides the components:

The object becomes more flexible. We can completely change the behavior of the object by
giving it different components to work with. Taken to its fullest extent, our object becomes
a generic component container that we can reuse over and over again for different
purposes.

The object can be decoupled from the concrete component types. If we’re allowing
outside code to pass in components, odds are good that we’re also letting it pass in derived
component types. At that point, the object only knows about the component interfaces and
not the concrete types themselves. This can make for a nicely encapsulated architecture.

How do components communicate with each other?

Perfectly decoupled components that function in isolation is a nice ideal, but it doesn’t really work in
practice. The fact that these components are part of the same object implies that they are part of a
larger whole and need to coordinate. That means communication.

So how can the components talk to each other? There are a couple of options, but unlike most design
“alternatives” in this book, these aren’t exclusive — you will likely support more than one at the
same time in your designs.

By modifying the container object’s state:

It keeps the components decoupled. When our InputComponent set Bjørn’s velocity and
the PhysicsComponent later used it, the two components had no idea that the other even
existed. For all they knew, Bjørn’s velocity could have changed through black magic.

It requires any information that components need to share to get pushed up into the
container object. Often, there’s state that’s really only needed by a subset of the
components. For example, an animation and a rendering component may need to share
information that’s graphics-specific. Pushing that information up into the container object
where every component can get to it muddies the object class.

Worse, if we use the same container object class with different component configurations,
we can end up wasting memory on state that isn’t needed by any of the object’s
components. If we push some rendering-specific data into the container object, any
invisible object will be burning memory on it with no benefit.

It makes communication implicit and dependent on the order that components are
processed. In our sample code, the original monolithic update() method had a very
carefully laid out order of operations. The user input modified the velocity, which was then
used by the physics code to modify the position, which in turn was used by the rendering
code to draw Bjørn at the right spot. When we split that code out into components, we were
careful to preserve that order of operations.

If we hadn’t, we would have introduced subtle, hard-to-track bugs. For example, if we’d
updated the graphics component first, we would wrongly render Bjørn at his position on
the last frame, not this one. If you imagine several more components and lots more code,
then you can get an idea of how hard it can be to avoid bugs like this.

Shared mutable state like this where lots of code is reading and writing the same data is notoriously hard to get right.
That’s a big part of why academics are spending time researching pure functional languages like Haskell where there is
no mutable state at all.

By referring directly to each other:

The idea here is that components that need to talk will have direct references to each other
without having to go through the container object at all.

Let’s say we want to let Bjørn jump. The graphics code needs to know if he should be drawn
using a jump sprite or not. It can determine this by asking the physics engine if he’s currently on
the ground. An easy way to do this is by letting the graphics component know about the physics
component directly:

class BjornGraphicsComponent
{
public:
 BjornGraphicsComponent(BjornPhysicsComponent* physics)
 : physics_(physics)
 {}

 void Update(GameObject& obj, Graphics& graphics)
 {
 Sprite* sprite;
 if (!physics_->isOnGround())
 {
 sprite = &spriteJump_;
 }
 else
 {
 // Existing graphics code...
 }

 graphics.draw(*sprite, obj.x, obj.y);
 }

private:
 BjornPhysicsComponent* physics_;

 Sprite spriteStand_;
 Sprite spriteWalkLeft_;
 Sprite spriteWalkRight_;
 Sprite spriteJump_;
};

When we construct Bjørn’s GraphicsComponent, we’ll give it a reference to his corresponding
PhysicsComponent.

It’s simple and fast. Communication is a direct method call from one object to another. The
component can call any method that is supported by the component it has a reference to. It’s
a free-for-all.

The two components are tightly coupled. The downside of the free-for-all. We’ve
basically taken a step back towards our monolithic class. It’s not quite as bad as the
original single class though, since we’re at least restricting the coupling to only the
component pairs that need to interact.

By sending messages:

This is the most complex alternative. We can actually build a little messaging system into
our container object and let the components broadcast information to each other.

Here’s one possible implementation. We’ll start by defining a base Component interface
that all of our components will implement:

class Component
{
public:
 virtual ~Component() {}
 virtual void receive(int message) = 0;
};

It has a single receive() method that component classes implement in order to listen to an
incoming message. Here, we’re just using an int to identify the message, but a fuller
implementation could attach additional data to the message.

Then, we’ll add a method to our container object for sending messages:

class ContainerObject
{
public:
 void send(int message)
 {
 for (int i = 0; i < MAX_COMPONENTS; i++)
 {
 if (components_[i] != NULL)
 {
 components_[i]->receive(message);
 }
 }
 }

private:
 static const int MAX_COMPONENTS = 10;
 Component* components_[MAX_COMPONENTS];
};

Now, if a component has access to its container, it can send messages to the container,
which will rebroadcast the message to all of the contained components. (That inclues the
original component that sent the message; be careful that you don’t get stuck in a feedback
loop!) This has a couple of consequences:

If you really want to get fancy, you can even make this message system queue messages to be delivered later. For
more on this, see Event Queue.

Sibling components are decoupled. By going through the parent container object, like our
shared state alternative, we ensure that the components are still decoupled from each other.
With this system, the only coupling they have is the message values themselves.

The Gang of Four call this the Mediator pattern — two or more objects communicate with each other indirectly by
routing the message through an intermediate object. In this case, the container object itself is the mediator.

The container object is simple. Unlike using shared state where the container object itself
owns and knows about data used by the components, here, all it does is blindly pass the
messages along. That can be useful for letting two components pass very domain-specific
information between themselves without having that bleed into the container object.

Unsurprisingly, there’s no one best answer here. What you’ll likely end up doing is using a bit of all
of them. Shared state is useful for the really basic stuff that you can take for granted that every object
has — things like position and size.

Some domains are distinct but still closely related. Think animation and rendering, user input and AI,
or physics and collision. If you have separate components for each half of those pairs, you may find it
easiest to just let them know directly about their other half.

http://c2.com/cgi-bin/wiki?MediatorPattern

Messaging is useful for “less important” communication. Its fire-and-forget nature is a good fit for
things like having an audio component play a sound when a physics component sends a message that
the object has collided with something.

As always, I recommend you start simple and then add in additional communication paths if you need
them.

See Also
The Unity framework’s core GameObject class is designed entirely around components.

The open source Delta3D engine has a base GameActor class that implements this pattern with
the appropriately named ActorComponent base class.

Microsoft’s XNA game framework comes with a core Game class. It owns a collection of
GameComponent objects. Where our example uses components at the individual game entity
level, XNA implements the pattern at the level of the main game object itself, but the purpose is
the same.

This pattern bears resemblance to the Gang of Four’s Strategy pattern. Both patterns are about
taking part of an object’s behavior and delegating it to a separate subordinate object. The
difference is that with the Strategy pattern, the separate “strategy” object is usually stateless —
it encapsulates an algorithm, but no data. It defines how an object behaves, but not what it is.

Components are a bit more self-important. They often hold state that describes the object and
helps define its actual identity. However, the line may blur. You may have some components that
don’t need any local state. In that case, you’re free to use the same component instance across
multiple container objects. At that point, it really is behaving more akin to a strategy.

http://unity3d.com
http://docs.unity3d.com/Documentation/Manual/GameObjects.html
http://docs.unity3d.com/Documentation/Manual/UsingComponents40.html
http://www.delta3d.org
http://creators.xna.com/en-US/
http://c2.com/cgi-bin/wiki?StrategyPattern

Event Queue

Intent
Decouple when a message or event is sent from when it is processed.

Motivation
Unless you live under one of the few rocks that still lack Internet access, you’ve probably already
heard of an “event queue”. If not, maybe “message queue”, or “event loop”, or “message pump” rings
a bell. To refresh your memory, let’s walk through a couple of common manifestations of the pattern.

For most of the chapter, I use “event” and “message” interchangeably. Where the distinction matters, I’ll make it obvious.

GUI event loops

If you’ve ever done any user interface programming, then you’re well acquainted with events. Every
time the user interacts with your program — clicks a button, pulls down a menu, or presses a key —
the operating system generates an event. It throws this object at your app, and your job is to grab it
and hook it up to some interesting behavior.

This application style is so common, it’s considered a paradigm: event-driven programming.

In order to receive these missives, somewhere deep in the bowels of your code is an event loop. It
looks roughly like this:

while (running)
{
 Event event = getNextEvent();
 // Handle event...
}

The call to getNextEvent() pulls a bit of unprocessed user input into your app. You route it to an
event handler and, like magic, your application comes to life. The interesting part is that the
application pulls in the event when it wants it. The operating system doesn’t just immediately jump to
some code in your app when the user pokes a peripheral.

In contrast, interrupts from the operating system do work like that. When an interrupt happens, the OS stops whatever your app was
doing and forces it to jump to an interrupt handler. This abruptness is why interrupts are so hard to work with.

That means when user input comes in, it needs to go somewhere so that the operating system doesn’t
lose it between when the device driver reported the input and when your app gets around to calling
getNextEvent(). That “somewhere” is a queue.

http://en.wikipedia.org/wiki/Event-driven_programming

When user input comes in, the OS adds it to a queue of unprocessed events. When you call
getNextEvent(), that pulls the oldest event off the queue and hands it to your application.

Central event bus

Most games aren’t event-driven like this, but it is common for a game to have its own event queue as
the backbone of its nervous system. You’ll often hear “central”, “global”, or “main” used to describe
it. It’s used for high level communication between game systems that want to stay decoupled.

If you want to know why they aren’t event-driven, crack open the Game Loop chapter.

Say your game has a tutorial system to display help boxes after specific in-game events. For example,
the first time the player vanquishes a foul beastie, you want to show a little balloon that says, “Press
X to grab the loot!”

Tutorial systems are a pain to implement gracefully, and most players will spend only a fraction of their time using in-game help, so it
feels like they aren’t worth the effort. But that fraction where they are using the tutorial can be invaluable for easing the player into
your game.

Your gameplay and combat code are likely complex enough as it is. The last thing you want to do is
stuff a bunch of checks for triggering tutorials in there. Instead, you could have a central event queue.
Any game system can send to it, so the combat code can add an “enemy died” event every time you
slay a foe.

Likewise, any game system can receive events from the queue. The tutorial engine registers itself with
the queue and indicates it wants to receive “enemy died” events. This way, knowledge of an enemy
dying makes its way from the combat system over to the tutorial engine without the two being directly
aware of each other.

This model where you have a shared space that entities can post information to and get notified by is similar to blackboard systems in
the AI field.

http://en.wikipedia.org/wiki/Blackboard_system

I thought about using this as the example for the rest of the chapter, but I’m not generally a fan of big
global systems. Event queues don’t have to be for communicating across the entire game engine. They
can be just as useful within a single class or domain.

Say what?

So, instead, let’s add sound to our game. Humans are mainly visual animals, but hearing is deeply
connected to our emotions and our sense of physical space. The right simulated echo can make a
black screen feel like an enormous cavern, and a well-timed violin adagio can make your heartstrings
hum in sympathetic resonance.

To get our game wound for sound, we’ll start with the simplest possible approach and see how it
goes. We’ll add a little “audio engine” that has an API for playing a sound given an identifier and a
volume:

While I almost always shy away from the Singleton pattern, this is one of the places where it may fit since the machine likely only has
one set of speakers. I’m taking a simpler approach and just making the method static.

class Audio
{
public:
 static void playSound(SoundId id, int volume);
};

It’s responsible for loading the appropriate sound resource, finding an available channel to play it on,
and starting it up. This chapter isn’t about some platform’s real audio API, so I’ll conjure one up that
we can presume is implemented elsewhere. Using it, we write our method like so:

void Audio::playSound(SoundId id, int volume)
{
 ResourceId resource = loadSound(id);
 int channel = findOpenChannel();
 if (channel == -1) return;
 startSound(resource, channel, volume);
}

We check that in, create a few sound files, and start sprinkling playSound() calls through our
codebase like some magical audio fairy. For example, in our UI code, we play a little bloop when the
selected menu item changes:

class Menu
{
public:
 void onSelect(int index)
 {
 Audio::playSound(SOUND_BLOOP, VOL_MAX);
 // Other stuff...
 }
};

After doing this, we notice that sometimes when you switch menu items, the whole screen freezes for
a few frames. We’ve hit our first issue:

Problem 1: The API blocks the caller until the audio engine has completely processed the
request.

Our playSound() method is synchronous — it doesn’t return back to the caller until bloops are
coming out of the speakers. If a sound file has to be loaded from disc first, that may take a while. In
the meantime, the rest of the game is frozen.

Ignoring that for now, we move on. In the AI code, we add a call to let out a wail of anguish when an
enemy takes damage from the player. Nothing warms a gamer’s heart like inflicting simulated pain on
a virtual living being.

It works, but sometimes when the hero does a mighty attack, it hits two enemies in the exact same
frame. That causes the game to play the wail sound twice simultaneously. If you know anything about
audio, you know mixing multiple sounds together sums their waveforms. When those are the same
waveform, it’s the same as one sound played twice as loud. It’s jarringly loud.

I ran into this exact issue working on Henry Hatsworth in the Puzzling Adventure. My solution there is similar to what we’ll cover
here.

We have a related problem in boss fights when piles of minions are running around causing mayhem.
The hardware can only play so many sounds at one time. When we go over that limit, sounds get
ignored or cut off.

To handle these issues, we need to look at the entire set of sound calls to aggregate and prioritize
them. Unfortunately, our audio API handles each playSound() call independently. It sees requests
through a pinhole, one at a time.

Problem 2: Requests cannot be processed in aggregate.

These problems seem like mere annoyances compared to the next issue that falls in our lap. By now,
we’ve strewn playSound() calls throughout the codebase in lots of different game systems. But our
game engine is running on modern multi-core hardware. To take advantage of those cores, we
distribute those systems on different threads — rendering on one, AI on another, etc.

Since our API is synchronous, it runs on the caller’s thread. When we call it from different game
systems, we’re hitting our API concurrently from multiple threads. Look at that sample code. See any
thread synchronization? Me neither.

This is particularly egregious because we intended to have a separate thread for audio. It’s just
sitting there totally idle while these other threads are busy stepping all over each other and breaking
things.

Problem 3: Requests are processed on the wrong thread.

The common theme to these problems is that the audio engine interprets a call to playSound() to
mean, “Drop everything and play the sound right now!” Immediacy is the problem. Other game
systems call playSound() at their convenience, but not necessarily when it’s convenient for the

http://en.wikipedia.org/wiki/Hen ry_Hatsworth_in_the_Puzzling_Adventure

audio engine to handle that request. To fix that, we’ll decouple receiving a request from processing
it.

The Pattern
A queue stores a series of notifications or requests in first-in, first-out order. Sending a notification
enqueues the request and returns. The request processor then processes items from the queue at a
later time. Requests can be handled directly or routed to interested parties. This decouples the
sender from the receiver both statically and in time.

When to Use It
If you only want to decouple who receives a message from its sender, patterns like Observer and
Command will take care of this with less complexity. You only need a queue when you want to
decouple something in time.

I mention this in nearly every chapter, but it’s worth emphasizing. Complexity slows you down, so treat simplicity as a precious
resource.

I think of it in terms of pushing and pulling. You have some code A that wants another chunk B to do
some work. The natural way for A to initiate that is by pushing the request to B.

Meanwhile, the natural way for B to process that request is by pulling it in at a convenient time in its
run cycle. When you have a push model on one end and a pull model on the other, you need a buffer
between them. That’s what a queue provides that simpler decoupling patterns don’t.

Queues give control to the code that pulls from it — the receiver can delay processing, aggregate
requests, or discard them entirely. But queues do this by taking control away from the sender. All the
sender can do is throw a request on the queue and hope for the best. This makes queues a poor fit
when the sender needs a response.

Keep in Mind
Unlike some more modest patterns in this book, event queues are complex and tend to have a wide-
reaching effect on the architecture of our games. That means you’ll want to think hard about how —
or if — you use one.

A central event queue is a global variable

One common use of this pattern is for a sort of Grand Central Station that all parts of the game can
route messages through. It’s a powerful piece of infrastructure, but powerful doesn’t always mean
good.

It took a while, but most of us learned the hard way that global variables are bad. When you have a
piece of state that any part of the program can poke at, all sorts of subtle interdependencies creep in.
This pattern wraps that state in a nice little protocol, but it’s still a global, with all of the danger that
entails.

The state of the world can change under you

Say some AI code posts an “entity died” event to a queue when a virtual minion shuffles off its mortal
coil. That event hangs out in the queue for who knows how many frames until it eventually works its
way to the front and gets processed.

Meanwhile, the experience system wants to track the heroine’s body count and reward her for her
grisly efficiency. It receives each “entity died” event and determines the kind of entity slain and the
difficulty of the kill so it can dish out an appropriate reward.

That requires various pieces of state in the world. We need the entity that died so we can see how
tough it was. We may want to inspect its surroundings to see what other obstacles or minions were
nearby. But if the event isn’t received until later, that stuff may be gone. The entity may have been
deallocated, and other nearby foes may have wandered off.

When you receive an event, you have to be careful not to assume the current state of the world
reflects how the world was when the event was raised. This means queued events tend to be more
data heavy than events in synchronous systems. With the latter, the notification can say “something
happened” and the receiver can look around for the details. With a queue, those ephemeral details
must be captured when the event is sent so they can be used later.

You can get stuck in feedback loops

All event and message systems have to worry about cycles:

1. A sends an event.
2. B receives it and responds by sending an event.
3. That event happens to be one that A cares about, so it receives it. In response, it sends an

event…
4. Go to 2.

When your messaging system is synchronous, you find cycles quickly — they overflow the stack and
crash your game. With a queue, the asynchrony unwinds the stack, so the game may keep running even
though spurious events are sloshing back and forth in there. A common rule to avoid this is to avoid
sending events from within code that’s handling one.

A little debug logging in your event system is probably a good idea too.

Sample Code
We’ve already seen some code. It’s not perfect, but it has the right basic functionality — the public
API we want and the right low-level audio calls. All that’s left for us to do now is fix its problems.

The first is that our API blocks. When a piece of code plays a sound, it can’t do anything else until
playSound() finishes loading the resource and actually starts making the speaker wiggle.

We want to defer that work until later so that playSound() can return quickly. To do that, we need to
reify the request to play a sound. We need a little structure that stores the details of a pending request
so we can keep it around until later:

struct PlayMessage
{
 SoundId id;
 int volume;
};

Next, we need to give Audio some storage space to keep track of these pending play messages. Now,
your algorithms professor might tell you to use some exciting data structure here like a Fibonacci
heap or a skip list, or, hell, at least a linked list. But in practice, the best way to store a bunch of
homogenous things is almost always a plain old array:

Algorithm researchers get paid to publish analyses of novel data structures. They aren’t exactly incentivized to stick to the basics.

No dynamic allocation.

No memory overhead for bookkeeping information or pointers.

Cache-friendly contiguous memory usage.

For lots more on what being “cache friendly” means, see the chapter on Data Locality.

So let’s do that:

class Audio
{
public:
 static void init()
 {
 numPending_ = 0;
 }

 // Other stuff...
private:
 static const int MAX_PENDING = 16;

 static PlayMessage pending_[MAX_PENDING];
 static int numPending_;
};

We can tune the array size to cover our worst case. To play a sound, we simply slot a new message in
there at the end:

http://en.wikipedia.org/wiki/Fibonacci_heap
http://en.wikipedia.org/wiki/Skip_list

void Audio::playSound(SoundId id, int volume)
{
 assert(numPending_ < MAX_PENDING);

 pending_[numPending_].id = id;
 pending_[numPending_].volume = volume;
 numPending_++;
}

This lets playSound() return almost instantly, but we do still have to play the sound, of course. That
code needs to go somewhere, and that somewhere is an update() method:

class Audio
{
public:
 static void update()
 {
 for (int i = 0; i < numPending_; i++)
 {
 ResourceId resource = loadSound(pending_[i].id);
 int channel = findOpenChannel();
 if (channel == -1) return;
 startSound(resource, channel, pending_[i].volume);
 }

 numPending_ = 0;
 }

 // Other stuff...
};

As the name implies, this is the Update Method pattern.

Now, we need to call that from somewhere convenient. What “convenient” means depends on your
game. It may mean calling it from the main game loop or from a dedicated audio thread.

This works fine, but it does presume we can process every sound request in a single call to
update(). If you’re doing something like processing a request asynchronously after its sound
resource is loaded, that won’t work. For update() to work on one request at a time, it needs to be
able to pull requests out of the buffer while leaving the rest. In other words, we need an actual queue.

A ring buffer

There are a bunch of ways to implement queues, but my favorite is called a ring buffer. It preserves
everything that’s great about arrays while letting us incrementally remove items from the front of the
queue.

Now, I know what you’re thinking. If we remove items from the beginning of the array, don’t we have
to shift all of the remaining items over? Isn’t that slow?

This is why they made us learn linked lists — you can remove nodes from them without having to
shift things around. Well, it turns out you can implement a queue without any shifting in an array too.
I’ll walk you through it, but first let’s get precise on some terms:

The head of the queue is where requests are read from. The head is the oldest pending request.

The tail is the other end. It’s the slot in the array where the next enqueued request will be
written. Note that it’s just past the end of the queue. You can think of it as a half-open range, if
that helps.

Since playSound() appends new requests at the end of the array, the head starts at element zero and
the tail grows to the right.

Let’s code that up. First, we’ll tweak our fields a bit to make these two markers explicit in the class:

class Audio
{
public:
 static void init()
 {
 head_ = 0;
 tail_ = 0;
 }

 // Methods...
private:
 static int head_;
 static int tail_;

 // Array...
};

In the implementation of playSound(), numPending_ has been replaced with tail_, but otherwise
it’s the same:

void Audio::playSound(SoundId id, int volume)
{
 assert(tail_ < MAX_PENDING);

 // Add to the end of the list.
 pending_[tail_].id = id;
 pending_[tail_].volume = volume;
 tail_++;
}

The more interesting change is in update():

void Audio::update()
{
 // If there are no pending requests, do nothing.
 if (head_ == tail_) return;

 ResourceId resource = loadSound(pending_[head_].id);
 int channel = findOpenChannel();
 if (channel == -1) return;
 startSound(resource, channel, pending_[head_].volume);

 head_++;
}

We process the request at the head and then discard it by advancing the head pointer to the right. We
detect an empty queue by seeing if there’s any distance between the head and tail.

This is why we made the tail one past the last item. It means that the queue will be empty if the head and tail are the same index.

Now we’ve got a queue — we can add to the end and remove from the front. There’s an obvious
problem, though. As we run requests through the queue, the head and tail keep crawling to the right.
Eventually, tail_ hits the end of the array, and party time is over. This is where it gets clever.

Do you want party time to be over? No. You do not.

Notice that while the tail is creeping forward, the head is too. That means we’ve got array elements
at the beginning of the array that aren’t being used anymore. So what we do is wrap the tail back
around to the beginning of the array when it runs off the end. That’s why it’s called a ring buffer — it
acts like a circular array of cells.

Implementing that is remarkably easy. When we enqueue an item, we just need to make sure the tail
wraps around to the beginning of the array when it reaches the end:

void Audio::playSound(SoundId id, int volume)
{
 assert((tail_ + 1) % MAX_PENDING != head_);

 // Add to the end of the list.
 pending_[tail_].id = id;
 pending_[tail_].volume = volume;
 tail_ = (tail_ + 1) % MAX_PENDING;
}

Replacing tail_++ with an increment modulo the array size wraps the tail back around. The other
change is the assertion. We need to ensure the queue doesn’t overflow. As long as there are fewer
than MAX_PENDING requests in the queue, there will be a little gap of unused cells between the head
and the tail. If the queue fills up, those will be gone and, like some weird backwards Ouroboros, the
tail will collide with the head and start overwriting it. The assertion ensures that this doesn’t happen.

In update(), we wrap the head around too:

void Audio::update()
{
 // If there are no pending requests, do nothing.
 if (head_ == tail_) return;

 ResourceId resource = loadSound(pending_[head_].id);
 int channel = findOpenChannel();
 if (channel == -1) return;
 startSound(resource, channel, pending_[head_].volume);

 head_ = (head_ + 1) % MAX_PENDING;
}

There you go — a queue with no dynamic allocation, no copying elements around, and the cache-
friendliness of a simple array.

If the maximum capacity bugs you, you can use a growable array. When the queue gets full, allocate a new array twice the size of the
current array (or some other multiple), then copy the items over.

Even though you copy when they array grows, enqueuing an item still has constant amortized complexity.

Aggregating requests

Now that we’ve got a queue in place, we can move onto the other problems. The first is that multiple
requests to play the same sound end up too loud. Since we know which requests are waiting to be
processed now, all we need to do is merge a request if it matches an already pending one:

void Audio::playSound(SoundId id, int volume)
{
 // Walk the pending requests.
 for (int i = head_; i != tail_;
 i = (i + 1) % MAX_PENDING)
 {
 if (pending_[i].id == id)
 {
 // Use the larger of the two volumes.
 pending_[i].volume = max(volume, pending_[i].volume);

 // Don't need to enqueue.
 return;
 }
 }

 // Previous code...
}

When we get two requests to play the same sound, we collapse them to a single request for whichever
is loudest. This “aggregation” is pretty rudimentary, but we could use the same idea to do more
interesting batching.

Note that we’re merging when the request is enqueued, not when it’s processed. That’s easier on our
queue since we don’t waste slots on redundant requests that will end up being collapsed later. It’s
also simpler to implement.

It does, however, put the processing burden on the caller. A call to playSound() will walk the entire
queue before it returns, which could be slow if the queue is large. It may make more sense to
aggregate in update() instead.

Another way to avoid the O(n) cost of scanning the queue is to use a different data structure. If we use a hash table keyed on the
SoundId, then we can check for duplicates in constant time.

There’s something important to keep in mind here. The window of “simultaneous” requests that we
can aggregate is only as big as the queue. If we process requests more quickly and the queue size
stays small, then we’ll have fewer opportunities to batch things together. Likewise, if processing lags
behind and the queue gets full, we’ll find more things to collapse.

This pattern insulates the requester from knowing when the request gets processed, but when you treat
the entire queue as a live data structure to be played with, then lag between making a request and
processing it can visibly affect behavior. Make sure you’re OK with that before doing this.

Spanning threads

Finally, the most pernicious problem. With our synchronous audio API, whatever thread called
playSound() was the thread that processed the request. That’s often not what we want.

On today’s multi-core hardware, you need more than one thread if you want to get the most out of your
chip. There are infinite ways to distribute code across threads, but a common strategy is to move each
domain of the game onto its own thread — audio, rendering, AI, etc.

Straight-line code only runs on a single core at a time. If you don’t use threads, even if you do the asynchronous-style programming
that’s in vogue, the best you’ll do is keep one core busy, which is a fraction of your CPU’s abilities.

Server programmers compensate for that by splitting their application into multiple independent processes. That lets the OS run them
concurrently on different cores. Games are almost always a single process, so a bit of threading really helps.

We’re in good shape to do that now that we have three critical pieces:

1. The code for requesting a sound is decoupled from the code that plays it.

2. We have a queue for marshalling between the two.

3. The queue is encapsulated from the rest of the program.

All that’s left is to make the methods that modify the queue — playSound() and update() —
thread-safe. Normally, I’d whip up some concrete code to do that, but since this is a book about
architecture, I don’t want to get mired in the details of any specific API or locking mechanism.

At a high level, all we need to do is ensure that the queue isn’t modified concurrently. Since
playSound() does a very small amount of work — basically just assigning a few fields — it can
lock without blocking processing for long. In update(), we wait on something like a condition
variable so that we don’t burn CPU cycles until there’s a request to process.

Design Decisions
Many games use event queues as a key part of their communication structure, and you can spend a ton
of time designing all sorts of complex routing and filtering for messages. But before you go off and
build something like the Los Angeles telephone switchboard, I encourage you to start simple. Here’s
a few starter questions to consider:

What goes in the queue?

I’ve used “event” and “message” interchangeably so far because it mostly doesn’t matter. You get the
same decoupling and aggregation abilities regardless of what you’re stuffing in the queue, but there
are some conceptual differences.

If you queue events:

An “event” or “notification” describes something that already happened, like “monster died”.
You queue it so that other objects can respond to the event, sort of like an asynchronous
Observer pattern.

You are likely to allow multiple listeners. Since the queue contains things that already
happened, the sender probably doesn’t care who receives it. From its perspective, the event
is in the past and is already forgotten.

The scope of the queue tends to be broader. Event queues are often used to broadcast
events to any and all interested parties. To allow maximum flexibility for which parties can
be interested, these queues tend to be more globally visible.

If you queue messages:

A “message” or “request” describes an action that we want to happen in the future, like “play
sound”. You can think of this as an asynchronous API to a service.

Another word for “request” is “command”, as in the Command pattern, and queues can be used there too.

You are more likely to have a single listener. In the example, the queued messages are
requests specifically for the audio API to play a sound. If other random parts of the game
engine started stealing messages off the queue, it wouldn’t do much good.

I say “more likely” here, because you can enqueue messages without caring which code processes it, as long as it gets
processed how you expect. In that case, you’re doing something akin to a service locator.

Who can read from the queue?

In our example, the queue is encapsulated and only the Audio class can read from it. In a user

interface’s event system, you can register listeners to your heart’s content. You sometimes hear the
terms “single-cast” and “broadcast” to distinguish these, and both styles are useful.

A single-cast queue:

This is the natural fit when a queue is part of a class’s API. Like in our audio example, from the
caller’s perspective, they just see a playSound() method they can call.

The queue becomes an implementation detail of the reader. All the sender knows is that it
sent a message.

The queue is more encapsulated. All other things being equal, more encapsulation is
usually better.

You don’t have to worry about contention between listeners. With multiple listeners, you
have to decide if they all get every item (broadcast) or if each item in the queue is parceled
out to one listener (something more like a work queue).

In either case, the listeners may end up doing redundant work or interfering with each other,
and you have to think carefully about the behavior you want. With a single listener, that
complexity disappears.

A broadcast queue:

This is how most “event” systems work. If you have ten listeners when an event comes in, all ten
of them see the event.

Events can get dropped on the floor. A corollary to the previous point is that if you have
zero listeners, all zero of them see the event. In most broadcast systems, if there are no
listeners at the point in time that an event is processed, the event gets discarded.

You may need to filter events. Broadcast queues are often widely visible to much of the
program, and you can end up with a bunch of listeners. Multiply lots of events times lots of
listeners, and you end up with a ton of event handlers to invoke.

To cut that down to size, most broadcast event systems let a listener winnow down the set
of events they receive. For example, they may say they only want to receive mouse events
or events within a certain region of the UI.

A work queue:

Like a broadcast queue, here you have multiple listeners too. The difference is that each item in
the queue only goes to one of them. This is a common pattern for parceling out jobs to a pool of
concurrently running threads.

You have to schedule. Since an item only goes to one listener, the queue needs logic to
figure out the best one to choose. This may be as simple as round robin or random choice,

or it could be some more complex prioritizing system.

Who can write to the queue?

This is the flip side of the previous design choice. This pattern works with all of the possible
read/write configurations: one-to-one, one-to-many, many-to-one, or many-to-many.

You sometimes hear “fan-in” used to describe many-to-one communication systems and “fan-out” for one-to-many.

With one writer:

This style is most similar to the synchronous Observer pattern. You have one privileged object
that generates events that others can then receive.

You implicitly know where the event is coming from. Since there’s only one object that can
add to the queue, any listener can safely assume that’s the sender.

You usually allow multiple readers. You can have a one-sender-one-receiver queue, but
that starts to feel less like the communication system this pattern is about and more like a
vanilla queue data structure.

With multiple writers:

This is how our audio engine example works. Since playSound() is a public method, any part
of the codebase can add a request to the queue. “Global” or “central” event buses work like this
too.

You have to be more careful of cycles. Since anything can potentially put something onto
the queue, it’s easier to accidentally enqueue something in the middle of handling an event.
If you aren’t careful, that may trigger a feedback loop.

You’ll likely want some reference to the sender in the event itself. When a listener gets an
event, it doesn’t know who sent it, since it could be anyone. If that’s something they need to
know, you’ll want to pack that into the event object so that the listener can use it.

What is the lifetime of the objects in the queue?

With a synchronous notification, execution doesn’t return to the sender until all of the receivers have
finished processing the message. That means the message itself can safely live in a local variable on
the stack. With a queue, the message outlives the call that enqueues it.

If you’re using a garbage collected language, you don’t need to worry about this too much. Stuff the
message in the queue, and it will stick around in memory as long as it’s needed. In C or C++, it’s up
to you to ensure the object lives long enough.

Pass ownership:

This is the traditional way to do things when managing memory manually. When a message gets
queued, the queue claims it and the sender no longer owns it. When it gets processed, the
receiver takes ownership and is responsible for deallocating it.

In C++, unique_ptr<T> gives you these exact semantics out of the box.

Share ownership:

These days, now that even C++ programmers are more comfortable with garbage collection,
shared ownership is more acceptable. With this, the message sticks around as long as anything
has a reference to it and is automatically freed when forgotten.

Likewise, the C++ type for this is shared_ptr<T>.

The queue owns it:

Another option is to have messages always live on the queue. Instead of allocating the message
itself, the sender requests a “fresh” one from the queue. The queue returns a reference to a
message already in memory inside the queue, and the sender fills it in. When the message gets
processed, the receiver refers to the same message in the queue.

In other words, the backing store for the queue is an object pool.

See Also
I’ve mentioned this a few times already, but in many ways, this pattern is the asynchronous
cousin to the well-known Observer pattern.

Like many patterns, event queues go by a number of aliases. One established term is “message
queue”. It’s usually referring to a higher-level manifestation. Where our event queues are within
an application, message queues are usually used for communicating between them.

Another term is “publish/subscribe”, sometimes abbreviated to “pubsub”. Like “message
queue”, it usually refers to larger distributed systems unlike the humble coding pattern we’re
focused on.

A finite state machine, similar to the Gang of Four’s State pattern, requires a stream of inputs. If
you want it to respond to those asynchronously, it makes sense to queue them.

When you have a bunch of state machines sending messages to each other, each with a little
queue of pending inputs (called a mailbox), then you’ve re-invented the actor model of
computation.

The Go programming language’s built-in “channel” type is essentially an event or message
queue.

http://en.wikipedia.org/wiki/Finite-state_machine
http://en.wikipedia.org/wiki/Actor_model
http://golang.org/

Service Locator

Intent
Provide a global point of access to a service without coupling users to the concrete class that
implements it.

Motivation
Some objects or systems in a game tend to get around, visiting almost every corner of the codebase.
It’s hard to find a part of the game that won’t need a memory allocator, logging, or random numbers at
some point. Systems like those can be thought of as services that need to be available to the entire
game.

For our example, we’ll consider audio. It doesn’t have quite the reach of something lower-level like
a memory allocator, but it still touches a bunch of game systems. A falling rock hits the ground with a
crash (physics). A sniper NPC fires his rifle and a shot rings out (AI). The user selects a menu item
with a beep of confirmation (user interface).

Each of these places will need to be able to call into the audio system with something like one of
these:

// Use a static class?
AudioSystem::playSound(VERY_LOUD_BANG);

// Or maybe a singleton?
AudioSystem::instance()->playSound(VERY_LOUD_BANG);

Either gets us where we’re trying to go, but we stumbled into some sticky coupling along the way.
Every place in the game calling into our audio system directly references the concrete AudioSystem
class and the mechanism for accessing it — either as a static class or a singleton.

These call sites, of course, have to be coupled to something in order to make a sound play, but letting
them poke at the concrete audio implementation directly is like giving a hundred strangers directions
to your house just so they can drop a letter on your doorstep. Not only is it a little bit too personal,
it’s a real pain when you move and you have to tell each person the new directions.

There’s a better solution: a phone book. People that need to get in touch with us can look us up by
name and get our current address. When we move, we tell the phone company. They update the book,
and everyone gets the new address. In fact, we don’t even need to give out our real address at all. We
can list a P.O. box or some other “representation” of ourselves instead. By having callers go through
the book to find us, we have a convenient single place where we control how we’re found.

This is the Service Locator pattern in a nutshell — it decouples code that needs a service from both
who it is (the concrete implementation type) and where it is (how we get to the instance of it).

The Pattern
A service class defines an abstract interface to a set of operations. A concrete service provider
implements this interface. A separate service locator provides access to the service by finding an
appropriate provider while hiding both the provider’s concrete type and the process used to locate it.

When to Use It
Anytime you make something accessible to every part of your program, you’re asking for trouble.
That’s the main problem with the Singleton pattern, and this pattern is no different. My simplest
advice for when to use a service locator is: sparingly.

Instead of using a global mechanism to give some code access to an object it needs, first consider
passing the object to it instead. That’s dead simple, and it makes the coupling completely obvious.
That will cover most of your needs.

But… there are some times when manually passing around an object is gratuitous or actively makes
code harder to read. Some systems, like logging or memory management, shouldn’t be part of a
module’s public API. The parameters to your rendering code should have to do with rendering, not
stuff like logging.

Likewise, other systems represent facilities that are fundamentally singular in nature. Your game
probably only has one audio device or display system that it can talk to. It is an ambient property of
the environment, so plumbing it through ten layers of methods just so one deeply nested call can get to
it is adding needless complexity to your code.

In those kinds of cases, this pattern can help. As we’ll see, it functions as a more flexible, more
configurable cousin of the Singleton pattern. When used well, it can make your codebase more
flexible with little runtime cost.

Conversely, when used poorly, it carries with it all of the baggage of the Singleton pattern with worse runtime performance.

Keep in Mind
The core difficulty with a service locator is that it takes a dependency — a bit of coupling between
two pieces of code — and defers wiring it up until runtime. This gives you flexibility, but the price
you pay is that it’s harder to understand what your dependencies are by reading the code.

The service actually has to be located

With a singleton or a static class, there’s no chance for the instance we need to not be available.
Calling code can take for granted that it’s there. But since this pattern has to locate the service, we
may need to handle cases where that fails. Fortunately, we’ll cover a strategy later to address this and
guarantee that we’ll always get some service when you need it.

The service doesn’t know who is locating it

Since the locator is globally accessible, any code in the game could be requesting a service and then
poking at it. This means that the service must be able to work correctly in any circumstance. For
example, a class that expects to be used only during the simulation portion of the game loop and not
during rendering may not work as a service — it wouldn’t be able to ensure that it’s being used at the
right time. So, if a class expects to be used only in a certain context, it’s safest to avoid exposing it to
the entire world with this pattern.

Sample Code
Getting back to our audio system problem, let’s address it by exposing the system to the rest of the
codebase through a service locator.

The service

We’ll start off with the audio API. This is the interface that our service will be exposing:

class Audio
{
public:
 virtual ~Audio() {}
 virtual void playSound(int soundID) = 0;
 virtual void stopSound(int soundID) = 0;
 virtual void stopAllSounds() = 0;
};

A real audio engine would be much more complex than this, of course, but this shows the basic idea.
What’s important is that it’s an abstract interface class with no implementation bound to it.

The service provider

By itself, our audio interface isn’t very useful. We need a concrete implementation. This book isn’t
about how to write audio code for a game console, so you’ll have to imagine there’s some actual
code in the bodies of these functions, but you get the idea:

class ConsoleAudio : public Audio
{
public:
 virtual void playSound(int soundID)
 {
 // Play sound using console audio api...
 }

 virtual void stopSound(int soundID)
 {
 // Stop sound using console audio api...
 }

 virtual void stopAllSounds()
 {
 // Stop all sounds using console audio api...
 }
};

Now we have an interface and an implementation. The remaining piece is the service locator — the
class that ties the two together.

A simple locator

The implementation here is about the simplest kind of service locator you can define:

class Locator
{
public:
 static Audio* getAudio() { return service_; }

 static void provide(Audio* service)
 {
 service_ = service;
 }

private:
 static Audio* service_;
};

The technique this uses is called dependency injection, an awkward bit of jargon for a very simple idea. Say you have one class that
depends on another. In our case, our Locator class needs an instance of the Audio service. Normally, the locator would be
responsible for constructing that instance itself. Dependency injection instead says that outside code is responsible for injecting that
dependency into the object that needs it.

The static getAudio() function does the locating. We can call it from anywhere in the codebase, and
it will give us back an instance of our Audio service to use:

Audio *audio = Locator::getAudio();
audio->playSound(VERY_LOUD_BANG);

The way it “locates” is very simple — it relies on some outside code to register a service provider
before anything tries to use the service. When the game is starting up, it calls some code like this:

ConsoleAudio *audio = new ConsoleAudio();
Locator::provide(audio);

The key part to notice here is that the code that calls playSound() isn’t aware of the concrete
ConsoleAudio class; it only knows the abstract Audio interface. Equally important, not even the
locator class is coupled to the concrete service provider. The only place in code that knows about
the actual concrete class is the initialization code that provides the service.

There’s one more level of decoupling here: the Audio interface isn’t aware of the fact that it’s being
accessed in most places through a service locator. As far as it knows, it’s just a regular abstract base
class. This is useful because it means we can apply this pattern to existing classes that weren’t
necessarily designed around it. This is in contrast with Singleton, which affects the design of the
“service” class itself.

A null service

Our implementation so far is certainly simple, and it’s pretty flexible too. But it has one big
shortcoming: if we try to use the service before a provider has been registered, it returns NULL. If the
calling code doesn’t check that, we’re going to crash the game.

I sometimes hear this called “temporal coupling” — two separate pieces of code that must be called in the right order for the program
to work correctly. All stateful software has some degree of this, but as with other kinds of coupling, reducing temporal coupling makes
the codebase easier to manage.

Fortunately, there’s another design pattern called “Null Object” that we can use to address this. The
basic idea is that in places where we would return NULL when we fail to find or create an object, we
instead return a special object that implements the same interface as the desired object. Its
implementation basically does nothing, but it allows code that receives the object to safely continue
on as if it had received a “real” one.

To use this, we’ll define another “null” service provider:

class NullAudio: public Audio
{
public:
 virtual void playSound(int soundID) { /* Do nothing. */ }
 virtual void stopSound(int soundID) { /* Do nothing. */ }
 virtual void stopAllSounds() { /* Do nothing. */ }
};

As you can see, it implements the service interface, but doesn’t actually do anything. Now, we change
our locator to this:

class Locator
{
public:
 static void initialize() { service_ = &nullService_; }

 static Audio& getAudio() { return *service_; }

 static void provide(Audio* service)
 {
 if (service == NULL)
 {
 // Revert to null service.
 service_ = &nullService_;
 }
 else
 {
 service_ = service;
 }
 }

private:
 static Audio* service_;
 static NullAudio nullService_;
};

You may notice we’re returning the service by reference instead of by pointer now. Since references in C++ are (in theory!) never
NULL, returning a reference is a hint to users of the code that they can expect to always get a valid object back.

The other thing to notice is that we’re checking for NULL in the provide() function instead of checking for the accessor. That requires
us to call initialize() early on to make sure that the locator initially correctly defaults to the null provider. In return, it moves the
branch out of getAudio(), which will save us a couple of cycles every time the service is accessed.

Calling code will never know that a “real” service wasn’t found, nor does it have to worry about
handling NULL. It’s guaranteed to always get back a valid object.

This is also useful for intentionally failing to find services. If we want to disable a system
temporarily, we now have an easy way to do so: simply don’t register a provider for the service, and
the locator will default to a null provider.

Turning off audio is handy during development. It frees up some memory and CPU cycles. More importantly, when you break into a

debugger just as a loud sound starts playing, it saves you from having your eardrums shredded. There’s nothing like twenty
milliseconds of a scream sound effect looping at full volume to get your blood flowing in the morning.

Logging decorator

Now that our system is pretty robust, let’s discuss another refinement this pattern lets us do —
decorated services. I’ll explain with an example.

During development, a little logging when interesting events occur can help you figure out what’s
going on under the hood of your game engine. If you’re working on AI, you’d like to know when an
entity changes AI states. If you’re the sound programmer, you may want a record of every sound as it
plays so you can check that they trigger in the right order.

The typical solution is to litter the code with calls to some log() function. Unfortunately, that
replaces one problem with another — now we have too much logging. The AI coder doesn’t care
when sounds are playing, and the sound person doesn’t care about AI state transitions, but now they
both have to wade through each other’s messages.

Ideally, we would be able to selectively enable logging for just the stuff we care about, and in the
final game build, there’d be no logging at all. If the different systems we want to conditionally log are
exposed as services, then we can solve this using the Decorator pattern. Let’s define another audio
service provider implementation like this:

class LoggedAudio : public Audio
{
public:
 LoggedAudio(Audio &wrapped)
 : wrapped_(wrapped)
 {}

 virtual void playSound(int soundID)
 {
 log("play sound");
 wrapped_.playSound(soundID);
 }

 virtual void stopSound(int soundID)
 {
 log("stop sound");
 wrapped_.stopSound(soundID);
 }

 virtual void stopAllSounds()
 {
 log("stop all sounds");
 wrapped_.stopAllSounds();
 }

private:
 void log(const char* message)
 {
 // Code to log message...
 }

 Audio &wrapped_;
};

http://www.c2.com/cgi/wiki?DecoratorPattern

As you can see, it wraps another audio provider and exposes the same interface. It forwards the
actual audio behavior to the inner provider, but it also logs each sound call. If a programmer wants to
enable audio logging, they call this:

void enableAudioLogging()
{
 // Decorate the existing service.
 Audio *service = new LoggedAudio(Locator::getAudio());

 // Swap it in.
 Locator::provide(service);
}

Now, any calls to the audio service will be logged before continuing as before. And, of course, this
plays nicely with our null service, so you can both disable audio and yet still log the sounds that it
would play if sound were enabled.

Design Decisions
We’ve covered a typical implementation, but there are a couple of ways that it can vary based on
differing answers to a few core questions:

How is the service located?

Outside code registers it:

This is the mechanism our sample code uses to locate the service, and it’s the most common
design I see in games:

It’s fast and simple. The getAudio() function simply returns a pointer. It will often get
inlined by the compiler, so we get a nice abstraction layer at almost no performance cost.

We control how the provider is constructed. Consider a service for accessing the game’s
controllers. We have two concrete providers: one for regular games and one for playing
online. The online provider passes controller input over the network so that, to the rest of
the game, remote players appear to be using local controllers.

To make this work, the online concrete provider needs to know the IP address of the other
remote player. If the locator itself was constructing the object, how would it know what to
pass in? The Locator class doesn’t know anything about online at all, much less some
other user’s IP address.

Externally registered providers dodge the problem. Instead of the locator constructing the
class, the game’s networking code instantiates the online-specific service provider, passing
in the IP address it needs. Then it gives that to the locator, who knows only about the
service’s abstract interface.

We can change the service while the game is running. We may not use this in the final
game, but it’s a neat trick during development. While testing, we can swap out, for
example, the audio service with the null service we talked about earlier to temporarily
disable sound while the game is still running.

The locator depends on outside code. This is the downside. Any code accessing the
service presumes that some code somewhere has already registered it. If that initialization
doesn’t happen, we’ll either crash or have a service mysteriously not working.

Bind to it at compile time:

The idea here is that the “location” process actually occurs at compile time using preprocessor
macros. Like so:

class Locator
{
public:
 static Audio& getAudio() { return service_; }

private:
 #if DEBUG
 static DebugAudio service_;
 #else
 static ReleaseAudio service_;
 #endif
};

Locating the service like this implies a few things:

It’s fast. Since all of the real work is done at compile time, there’s nothing left to do at
runtime. The compiler will likely inline the getAudio() call, giving us a solution that’s as
fast as we could hope for.

You can guarantee the service is available. Since the locator owns the service now and
selects it at compile time, we can be assured that if the game compiles, we won’t have to
worry about the service being unavailable.

You can’t change the service easily. This is the major downside. Since the binding
happens at build time, anytime you want to change the service, you’ve got to recompile and
restart the game.

Configure it at runtime:

Over in the khaki-clad land of enterprise business software, if you say “service locator”, this is
what they’ll have in mind. When the service is requested, the locator does some magic at runtime
to hunt down the actual implementation requested.

Reflection is a capability of some programming languages to interact with the type system at runtime. For example, we could
find a class with a given name, find its constructor, and then invoke it to create an instance.

Dynamically typed languages like Lisp, Smalltalk, and Python get this by their very nature, but newer static languages like C#
and Java also support it.

Typically, this means loading a configuration file that identifies the provider and then using
reflection to instantiate that class at runtime. This does a few things for us:

We can swap out the service without recompiling. This is a little more flexible than a
compile-time-bound service, but not quite as flexible as a registered one where you can
actually change the service while the game is running.

Non-programmers can change the service. This is nice for when the designers want to be
able to turn certain game features on and off but aren’t comfortable mucking through source
code. (Or, more likely, the coders aren’t comfortable with them mucking through it.)

The same codebase can support multiple configurations simultaneously. Since the
location process has been moved out of the codebase entirely, we can use the same code to

support multiple service configurations simultaneously.

This is one of the reasons this model is appealing over in enterprise web-land: you can
deploy a single app that works on different server setups just by changing some configs.
Historically, this was less useful in games since console hardware is pretty well-
standardized, but as more games target a heaping hodgepodge of mobile devices, this is
becoming more relevant.

It’s complex. Unlike the previous solutions, this one is pretty heavyweight. You have to
create some configuration system, possibly write code to load and parse a file, and
generally do some stuff to locate the service. Time spent writing this code is time not spent
on other game features.

Locating the service takes time. And now the smiles really turn to frowns. Going with
runtime configuration means you’re burning some CPU cycles locating the service. Caching
can minimize this, but that still implies that the first time you use the service, the game’s got
to go off and spend some time hunting it down. Game developers hate burning CPU cycles
on something that doesn’t improve the player’s game experience.

What happens if the service can’t be located?

Let the user handle it:

The simplest solution is to pass the buck. If the locator can’t find the service, it just returns NULL.
This implies:

It lets users determine how to handle failure. Some users may consider failing to find a
service a critical error that should halt the game. Others may be able to safely ignore it and
continue. If the locator can’t define a blanket policy that’s correct for all cases, then passing
the failure down the line lets each call site decide for itself what the right response is.

Users of the service must handle the failure. Of course, the corollary to this is that each
call site must check for failure to find the service. If almost all of them handle failure the
same way, that’s a lot duplicate code spread throughout the codebase. If just one of the
potentially hundreds of places that use the service fails to make that check, our game is
going to crash.

Halt the game:

I said that we can’t prove that the service will always be available at compile-time, but that
doesn’t mean we can’t declare that availability is part of the runtime contract of the locator. The
simplest way to do this is with an assertion:

class Locator
{
public:
 static Audio& getAudio()

 {
 Audio* service = NULL;

 // Code here to locate service...

 assert(service != NULL);
 return *service;
 }
};

If the service isn’t located, the game stops before any subsequent code tries to use it. The
assert() call there doesn’t solve the problem of failing to locate the service, but it does make
it clear whose problem it is. By asserting here, we say, “Failing to locate a service is a bug in
the locator.”

The Singleton chapter explains the assert() function if you’ve never seen it before.

So what does this do for us?

Users don’t need to handle a missing service. Since a single service may be used in
hundreds of places, this can be a significant code saving. By declaring it the locator’s job
to always provide a service, we spare the users of the service from having to pick up that
slack.

The game is going to halt if the service can’t be found. On the off chance that a service
really can’t be found, the game is going to halt. This is good in that it forces us to address
the bug that’s preventing the service from being located (likely some initialization code
isn’t being called when it should), but it’s a real drag for everyone else who’s blocked until
it’s fixed. With a large dev team, you can incur some painful programmer downtime when
something like this breaks.

Return a null service:

We showed this refinement in our sample implementation. Using this means:

Users don’t need to handle a missing service. Just like the previous option, we ensure that
a valid service object will always be returned, simplifying code that uses the service.

The game will continue if the service isn’t available. This is both a boon and a curse. It’s
helpful in that it lets us keep running the game even when a service isn’t there. This can be
really helpful on a large team when a feature we’re working on may be dependent on some
other system that isn’t in place yet.

The downside is that it may be harder to debug an unintentionally missing service. Say the
game uses a service to access some data and then make a decision based on it. If we’ve
failed to register the real service and that code gets a null service instead, the game may not
behave how we want. It will take some work to trace that issue back to the fact that a
service wasn’t there when we thought it would be.

We can alleviate this by having the null service print some debug output whenever it’s used.

Among these options, the one I see used most frequently is simply asserting that the service will be
found. By the time a game gets out the door, it’s been very heavily tested, and it will likely be run on
a reliable piece of hardware. The chances of a service failing to be found by then are pretty slim.

On a larger team, I encourage you to throw a null service in. It doesn’t take much effort to implement,
and can spare you from some downtime during development when a service isn’t available. It also
gives you an easy way to turn off a service if it’s buggy or is just distracting you from what you’re
working on.

What is the scope of the service?

Up to this point, we’ve assumed that the locator will provide access to the service to anyone who
wants it. While this is the typical way the pattern is used, another option is to limit access to a single
class and its descendants, like so:

class Base
{
 // Code to locate service and set service_...

protected:
 // Derived classes can use service
 static Audio& getAudio() { return *service_; }

private:
 static Audio* service_;
};

With this, access to the service is restricted to classes that inherit Base. There are advantages either
way:

If access is global:

It encourages the entire codebase to all use the same service. Most services are intended
to be singular. By allowing the entire codebase to have access to the same service, we can
avoid random places in code instantiating their own providers because they can’t get to the
“real” one.

We lose control over where and when the service is used. This is the obvious cost of
making something global — anything can get to it. The Singleton chapter has a full cast of
characters for the horror show that global scope can spawn.

If access is restricted to a class:

We control coupling. This is the main advantage. By limiting a service to a branch of the
inheritance tree, we can make sure systems that should be decoupled stay decoupled.

It can lead to duplicate effort. The potential downside is that if a couple of unrelated
classes do need access to the service, they’ll each need to have their own reference to it.
Whatever process is used to locate or register the service will have to be duplicated

between those classes.

(The other option is to change the class hierarchy around to give those classes a common
base class, but that’s probably more trouble than it’s worth.)

My general guideline is that if the service is restricted to a single domain in the game, then limit its
scope to a class. For example, a service for getting access to the network can probably be limited to
online classes. Services that get used more widely like logging should be global.

See Also
The Service Locator pattern is a sibling to Singleton in many ways, so it’s worth looking at both
to see which is most appropriate for your needs.

The Unity framework uses this pattern in concert with the Component pattern in its
GetComponent() method.

Microsoft’s XNA framework for game development has this pattern built into its core Game
class. Each instance has a GameServices object that can be used to register and locate services
of any type.

http://unity3d.com
http://docs.unity3d.com/412/Documentation/ScriptReference/Component.GetComponent.html?from=index
http://msdn.microsoft.com/en-us/library/microsoft.xna.framework.game.services.aspx

Optimization Patterns
While the rising tide of faster and faster hardware has lifted most software above worrying about
performance, games are one of the few remaining exceptions. Players always want richer, more
realistic and exciting experiences. Screens are crowded with games vying for a player’s attention —
and cash! — and the game that pushes the hardware the furthest often wins.

Optimizing for performance is a deep art that touches all aspects of software. Low-level coders
master the myriad idiosyncrasies of hardware architectures. Meanwhile, algorithms researchers
compete to prove mathematically whose procedure is the most efficient.

Here, I touch on a few mid-level patterns that are often used to speed up a game. Data Locality
introduces you to the modern computer’s memory hierarchy and how you can use it to your advantage.
The Dirty Flag pattern helps you avoid unnecessary computation while Object Pools help you avoid
unnecessary allocation. Spatial Partitioning speeds up the virtual world and its inhabitants’
arrangement in space.

The Patterns
Data Locality
Dirty Flag
Object Pool
Spatial Partition

Data Locality

Intent
Accelerate memory access by arranging data to take advantage of CPU caching.

Motivation
We’ve been lied to. They keep showing us charts where CPU speed goes up and up every year as if
Moore’s Law isn’t just a historical observation but some kind of divine right. Without lifting a finger,
we software folks watch our programs magically accelerate just by virtue of new hardware.

Chips have been getting faster (though even that’s plateauing now), but the hardware heads failed to
mention something. Sure, we can process data faster than ever, but we can’t get that data faster.

Processor and RAM speed relative to their respective speeds in 1980. As you can see, CPUs have grown in leaps and bounds, but
RAM access is lagging far behind.

Data for this is from Computer Architecture: A Quantitative Approach by John L. Hennessy, David A. Patterson, Andrea C.
Arpaci-Dusseau by way of Tony Albrecht’s “Pitfalls of Object-Oriented Programming”.

For your super-fast CPU to blow through a ream of calculations, it actually has to get the data out of
main memory and into registers. As you can see, RAM hasn’t been keeping up with increasing CPU
speeds. Not even close.

With today’s hardware, it can take hundreds of cycles to fetch a byte of data from RAM. If most
instructions need data, and it takes hundreds of cycles to get it, how is it that our CPUs aren’t sitting
idle 99% of the time waiting for data?

Actually, they are stuck waiting on memory an astonishingly large fraction of time these days, but it’s

http://seven-degrees-of-freedom.blogspot.com/2009/12/pitfalls-of-object-oriented-programming.html

not as bad as it could be. To explain how, let’s take a trip to the Land of Overly Long Analogies…

It’s called “random access memory” because, unlike disc drives, you can theoretically access any piece of it as quick as any other.
You don’t have to worry about reading things consecutively like you do a disc.

Or, at least, you didn’t. As we’ll see, RAM isn’t so random access anymore.

A data warehouse

Imagine you’re an accountant in a tiny little office. Your job is to request a box of papers and then do
some accountant-y stuff with them — add up a bunch of numbers or something. You must do this for
specific labeled boxes according to some arcane logic that only makes sense to other accountants.

I probably shouldn’t have used a job I know absolutely nothing about in this analogy.

Thanks to a mixture of hard work, natural aptitude, and stimulants, you can finish an entire box in, say,
a minute. There’s a little problem, though. All of those boxes are stored in a warehouse in a separate
building. To get a box, you have to ask the warehouse guy to bring it to you. He goes and gets a
forklift and drives around the aisles until he finds the box you want.

It takes him, seriously, an entire day to do this. Unlike you, he’s not getting employee of the month any
time soon. This means that no matter how fast you are, you only get one box a day. The rest of the
time, you just sit there and question the life decisions that led to this soul-sucking job.

One day, a group of industrial designers shows up. Their job is to improve the efficiency of
operations — things like making assembly lines go faster. After watching you work for a few days,
they notice a few things:

Pretty often, when you’re done with one box, the next box you request is right next to it on the
same shelf in the warehouse.

Using a forklift to carry a single box of papers is pretty dumb.

There’s actually a little bit of spare room in the corner of your office.

The technical term for using something near the thing you just used is locality of reference.

They come up with a clever fix. Whenever you request a box from the warehouse guy, he’ll grab an
entire pallet of them. He gets the box you want and then some more boxes that are next to it. He
doesn’t know if you want those (and, given his work ethic, clearly doesn’t care); he simply takes as
many as he can fit on the pallet.

He loads the whole pallet and brings it to you. Disregarding concerns for workplace safety, he drives
the forklift right in and drops the pallet in the corner of your office.

When you need a new box, now, the first thing you do is see if it’s already on the pallet in your office.
If it is, great! It only takes you a second to grab it and get back to crunching numbers. If a pallet holds

fifty boxes and you got lucky and all of the boxes you need happen to be on it, you can churn through
fifty times more work than you could before.

But if you need a box that’s not on the pallet, you’re back to square one. Since you can only fit one
pallet in your office, your warehouse friend will have to take that one back and then bring you an
entirely new one.

A pallet for your CPU

Strangely enough, this is similar to how CPUs in modern computers work. In case it isn’t obvious,
you play the role of the CPU. Your desk is the CPU’s registers, and the box of papers is the data you
can fit in them. The warehouse is your machine’s RAM, and that annoying warehouse guy is the bus
that pulls data from main memory into registers.

If I were writing this chapter thirty years ago, the analogy would stop there. But as chips got faster
and RAM, well, didn’t, hardware engineers started looking for solutions. What they came up with
was CPU caching.

Modern computers have a little chunk of memory right inside the chip. The CPU can pull data from
this much faster than it can from main memory. It’s small because it has to fit in the chip and because
the faster type of memory it uses (static RAM or “SRAM”) is way more expensive.

Modern hardware has multiple levels of caching, which is what they mean when you hear “L1”, “L2”, “L3”, etc. Each level is larger
but slower than the previous. For this chapter, we won’t worry about the fact that memory is actually a hierarchy, but it’s important to
know.

This little chunk of memory is called a cache (in particular, the chunk on the chip is your L1 cache),
and in my belabored analogy, its part was played by the pallet of boxes. Whenever your chip needs a
byte of data from RAM, it automatically grabs a whole chunk of contiguous memory — usually
around 64 to 128 bytes — and puts it in the cache. This dollop of memory is called a cache line.

If the next byte of data you need happens to be in that chunk, the CPU reads it straight from the cache,
which is much faster than hitting RAM. Successfully finding a piece of data in the cache is called a
cache hit. If it can’t find it in there and has to go to main memory, that’s a cache miss.

http://en.wikipedia.org/wiki/Memory_hierarchy

I glossed over (at least) one detail in the analogy. In your office, there was only room for one pallet, or one cache line. A real cache
contains a number of cache lines. The details about how those work is out of scope here, but search for “cache associativity” to feed
your brain.

When a cache miss occurs, the CPU stalls — it can’t process the next instruction because it needs
data. It sits there, bored out of its mind for a few hundred cycles until the fetch completes. Our
mission is to avoid that. Imagine you’re trying to optimize some performance-critical piece of game
code and it looks like this:

for (int i = 0; i < NUM_THINGS; i++)
{
 sleepFor500Cycles();
 things[i].doStuff();
}

What’s the first change you’re going to make to that code? Right. Take out that pointless, expensive
function call. That call is equivalent to the performance cost of a cache miss. Every time you bounce
to main memory, it’s like you put a delay in your code.

Wait, data is performance?

When I started working on this chapter, I spent some time putting together little game-like programs
that would trigger best case and worst case cache usage. I wanted benchmarks that would thrash the
cache so I could see first-hand how much bloodshed it causes.

When I got some stuff working, I was surprised. I knew it was a big deal, but there’s nothing quite
like seeing it with your own eyes. I wrote two programs that did the exact same computation. The
only difference was how many cache misses they caused. The slow one was fifty times slower than
the other.

There are a lot of caveats here. In particular, different computers have different cache setups, so my machine may be different from
yours, and dedicated game consoles are very different from PCs, which are quite different from mobile devices.

Your mileage will vary.

This was a real eye-opener to me. I’m used to thinking of performance being an aspect of code, not
data. A byte isn’t slow or fast, it’s just some static thing sitting there. But because of caching, the way
you organize data directly impacts performance.

The challenge now is to wrap that up into something that fits into a chapter here. Optimization for
cache usage is a huge topic. I haven’t even touched on instruction caching. Remember, code is in
memory too and has to be loaded onto the CPU before it can be executed. Someone more versed on
the subject could write an entire book on it.

In fact, someone did write a book on it: Data-Oriented Design, by Richard Fabian.

Since you’re already reading this book right now, though, I have a few basic techniques that will get
you started along the path of thinking about how data structures impact your performance.

http://www.dataorienteddesign.com/dodmain/

It all boils down to something pretty simple: whenever the chip reads some memory, it gets a whole
cache line. The more you can use stuff in that cache line, the faster you go. So the goal then is to
organize your data structures so that the things you’re processing are next to each other in
memory.

There’s a key assumption here, though: one thread. If you are modifying nearby data on multiple threads, it’s faster to have it on
different cache lines. If two threads try to tweak data on the same cache line, both cores have to do some costly synchronization of
their caches.

In other words, if your code is crunching on Thing, then Another, then Also, you want them laid out
in memory like this:

Note, these aren’t pointers to Thing, Another, and Also. This is the actual data for them, in place,
lined up one after the other. As soon as the CPU reads in Thing, it will start to get Another and Also
too (depending on how big they are and how big a cache line is). When you start working on them
next, they’ll already be cached. Your chip is happy, and you’re happy.

The Pattern
Modern CPUs have caches to speed up memory access. These can access memory adjacent to
recently accessed memory much quicker. Take advantage of that to improve performance by
increasing data locality — keeping data in contiguous memory in the order that you process it.

When to Use It
Like most optimizations, the first guideline for using the Data Locality pattern is when you have a
performance problem. Don’t waste time applying this to some infrequently executed corner of your
codebase. Optimizing code that doesn’t need it just makes your life harder since the result is almost
always more complex and less flexible.

With this pattern specifically, you’ll also want to be sure your performance problems are caused by
cache misses. If your code is slow for other reasons, this won’t help.

The cheap way to profile is to manually add a bit of instrumentation that checks how much time has
elapsed between two points in the code, hopefully using a precise timer. To catch poor cache usage,
you’ll want something a little more sophisticated. You really want to see how many cache misses are
occurring and where.

Fortunately, there are profilers out there that report this. It’s worth spending the time to get one of
these working and make sure you understand the (surprisingly complex) numbers it throws at you
before you do major surgery on your data structures.

Unfortunately, most of those tools aren’t cheap. If you’re on a console dev team, you probably already have licenses for them.

If not, an excellent free option is Cachegrind. It runs your program on top of a simulated CPU and cache hierarchy and then reports
all of the cache interactions.

That being said, cache misses will affect the performance of your game. While you shouldn’t spend a
ton of time pre-emptively optimizing for cache usage, do think about how cache-friendly your data
structures are throughout the design process.

http://valgrind.org/docs/manual/cg-manual.html

Keep in Mind
One of the hallmarks of software architecture is abstraction. A large chunk of this book is about
patterns to decouple pieces of code from each other so that they can be changed more easily. In
object-oriented languages, this almost always means interfaces.

In C++, using interfaces implies accessing objects through pointers or references. But going through a
pointer means hopping across memory, which leads to the cache misses this pattern works to avoid.

The other half of interfaces is virtual method calls. Those require the CPU to look up an object’s vtable and then find the pointer to
the actual method to call there. So, again, you’re chasing pointers, which can cause cache misses.

In order to please this pattern, you will have to sacrifice some of your precious abstractions. The
more you design your program around data locality, the more you will have to give up inheritance,
interfaces, and the benefits those tools can provide. There’s no silver bullet here, only challenging
trade-offs. That’s what makes it fun!

Sample Code
If you really go down the rathole of optimizing for data locality, you’ll discover countless ways to
slice and dice your data structures into pieces your CPU can most easily digest. To get you started,
I’ll show an example for each of a few of the most common ways to organize your data. We’ll cover
them in the context of some specific part of a game engine, but (as with other patterns), keep in mind
that the general technique can be applied anywhere it fits.

Contiguous arrays

Let’s start with a game loop that processes a bunch of game entities. Those entities are decomposed
into different domains — AI, physics, and rendering — using the Component pattern. Here’s the
GameEntity class:

class GameEntity
{
public:
 GameEntity(AIComponent* ai,
 PhysicsComponent* physics,
 RenderComponent* render)
 : ai_(ai), physics_(physics), render_(render)
 {}

 AIComponent* ai() { return ai_; }
 PhysicsComponent* physics() { return physics_; }
 RenderComponent* render() { return render_; }

private:
 AIComponent* ai_;
 PhysicsComponent* physics_;
 RenderComponent* render_;
};

Each component has a relatively small amount of state, maybe little more than a few vectors or a
matrix, and then a method to update it. The details aren’t important here, but imagine something
roughly along the lines of:

As the name implies, these are examples of the Update Method pattern. Even render() is this pattern, just by another name.

class AIComponent
{
public:
 void update() { /* Work with and modify state... */ }

private:
 // Goals, mood, etc. ...
};

class PhysicsComponent
{
public:
 void update() { /* Work with and modify state... */ }

private:
 // Rigid body, velocity, mass, etc. ...
};

class RenderComponent
{
public:
 void render() { /* Work with and modify state... */ }

private:
 // Mesh, textures, shaders, etc. ...
};

The game maintains a big array of pointers to all of the entities in the world. Each spin of the game
loop, we need to run the following:

1. Update the AI components for all of the entities.

2. Update the physics components for them.

3. Render them using their render components.

Lots of game engines implement that like so:

while (!gameOver)
{
 // Process AI.
 for (int i = 0; i < numEntities; i++)
 {
 entities[i]->ai()->update();
 }

 // Update physics.
 for (int i = 0; i < numEntities; i++)
 {
 entities[i]->physics()->update();
 }

 // Draw to screen.
 for (int i = 0; i < numEntities; i++)
 {
 entities[i]->render()->render();
 }

 // Other game loop machinery for timing...
}

Before you ever heard of a CPU cache, this looked totally innocuous. But by now, you’ve got an
inkling that something isn’t right here. This code isn’t just thrashing the cache, it’s taking it around
back and beating it to a pulp. Watch what it’s doing:

1. The array of game entities is storing pointers to them, so for each element in the array, we have
to traverse that pointer. That’s a cache miss.

2. Then the game entity has a pointer to the component. Another cache miss.

3. Then we update the component.

4. Now we go back to step one for every component of every entity in the game.

The scary part is that we have no idea how these objects are laid out in memory. We’re completely at
the mercy of the memory manager. As entities get allocated and freed over time, the heap is likely to
become increasingly randomly organized.

Every frame, the game loop has to follow all of those arrows to get to the data it cares about.

If our goal was to take a whirlwind tour around the game’s address space like some “256MB of RAM
in Four Nights!” cheap vacation package, this would be a fantastic deal. But our goal is to run the
game quickly, and traipsing all over main memory is not the way to do that. Remember that
sleepFor500Cycles() function? Well this code is effectively calling that all the time.

The term for wasting a bunch of time traversing pointers is “pointer chasing”, which it turns out is nowhere near as fun as it sounds.

Let’s do something better. Our first observation is that the only reason we follow a pointer to get to
the game entity is so we can immediately follow another pointer to get to a component. GameEntity
itself has no interesting state and no useful methods. The components are what the game loop cares
about.

Instead of a giant constellation of game entities and components scattered across the inky darkness of
address space, we’re going to get back down to Earth. We’ll have a big array for each type of
component: a flat array of AI components, another for physics, and another for rendering.

Like this:

AIComponent* aiComponents =
 new AIComponent[MAX_ENTITIES];
PhysicsComponent* physicsComponents =
 new PhysicsComponent[MAX_ENTITIES];

RenderComponent* renderComponents =
 new RenderComponent[MAX_ENTITIES];

My least favorite part about using components is how long the word “component” is.

Let me stress that these are arrays of components and not pointers to components. The data is all
there, one byte after the other. The game loop can then walk these directly:

while (!gameOver)
{
 // Process AI.
 for (int i = 0; i < numEntities; i++)
 {
 aiComponents[i].update();
 }

 // Update physics.
 for (int i = 0; i < numEntities; i++)
 {
 physicsComponents[i].update();
 }

 // Draw to screen.
 for (int i = 0; i < numEntities; i++)
 {
 renderComponents[i].render();
 }

 // Other game loop machinery for timing...
}

One hint that we’re doing better here is how few -> operators there are in the new code. If you want to improve data locality, look for
indirection operators you can get rid of.

We’ve ditched all of that pointer chasing. Instead of skipping around in memory, we’re doing a
straight crawl through three contiguous arrays.

This pumps a solid stream of bytes right into the hungry maw of the CPU. In my testing, this change
made the update loop fifty times faster than the previous version.

Interestingly, we haven’t lost much encapsulation here. Sure, the game loop is updating the
components directly instead of going through the game entities, but it was doing that before to ensure
they were processed in the right order. Even so, each component itself is still nicely encapsulated. It
owns its own data and methods. We simply changed the way it’s used.

This doesn’t mean we need to get rid of GameEntity either. We can leave it as it is with pointers to
its components. They’ll just point into those arrays. This is still useful for other parts of the game
where you want to pass around a conceptual “game entity” and everything that goes with it. The
important part is that the performance-critical game loop sidesteps that and goes straight to the data.

Packed data

Say we’re doing a particle system. Following the advice of the previous section, we’ve got all of our
particles in a nice big contiguous array. Let’s wrap it in a little manager class too:

The ParticleSystem class is an example of an object pool custom built for a single type of object.

class Particle
{
public:
 void update() { /* Gravity, etc. ... */ }
 // Position, velocity, etc. ...
};

class ParticleSystem
{
public:
 ParticleSystem()
 : numParticles_(0)
 {}

 void update();
private:
 static const int MAX_PARTICLES = 100000;

 int numParticles_;
 Particle particles_[MAX_PARTICLES];
};

A rudimentary update method for the system just looks like this:

void ParticleSystem::update()
{
 for (int i = 0; i < numParticles_; i++)
 {
 particles_[i].update();
 }
}

But it turns out that we don’t actually need to process all of the particles all the time. The particle
system has a fixed-size pool of objects, but they aren’t usually all actively twinkling across the
screen. The easy answer is something like this:

for (int i = 0; i < numParticles_; i++)
{
 if (particles_[i].isActive())
 {
 particles_[i].update();
 }
}

We give Particle a flag to track whether its in use or not. In the update loop, we check that for each
particle. That loads the flag into the cache along with all of that particle’s other data. If the particle

isn’t active, then we skip over it to the next one. The rest of the particle’s data that we loaded into the
cache is a waste.

The fewer active particles there are, the more we’re skipping across memory. The more we do that,
the more cache misses there are between actually doing useful work updating active particles. If the
array is large and has lots of inactive particles in it, we’re back to thrashing the cache again.

Having objects in a contiguous array doesn’t solve much if the objects we’re actually processing
aren’t contiguous in it. If it’s littered with inactive objects we have to dance around, we’re right back
to the original problem.

Savvy low-level coders can see another problem here. Doing an if check for every particle can cause a branch misprediction and a
pipeline stall. In modern CPUs, a single “instruction” actually takes several clock cycles. To keep the CPU busy, instructions are
pipelined so that the subsequent instructions start processing before the first one finishes.

To do that, the CPU has to guess which instructions it will be executing next. In straight line code, that’s easy, but with control flow,
it’s harder. While it’s executing the instructions for that if, does it guess that the particle is active and start executing the code for the
update() call, or does it guess that it isn’t?

To answer that, the chip does branch prediction — it sees which branches your code previously took and guesses that it will do that
again. But when the loop is constantly toggling between particles that are and aren’t active, that prediction fails.

When it does, the CPU has to ditch the instructions it had started speculatively processing (a pipeline flush) and start over. The
performance impact of this varies widely by machine, but this is why you sometimes see developers avoid flow control in hot code.

Given the title of this section, you can probably guess the answer. Instead of checking the active flag,
we’ll sort by it. We’ll keep all of the active particles in the front of the list. If we know all of those
particles are active, we don’t have to check the flag at all.

We can also easily keep track of how many active particles there are. With this, our update loop turns
into this thing of beauty:

for (int i = 0; i < numActive_; i++)
{
 particles[i].update();
}

Now we aren’t skipping over any data. Every byte that gets sucked into the cache is a piece of an
active particle that we actually need to process.

Of course, I’m not saying you should quicksort the entire collection of particles every frame. That
would more than eliminate the gains here. What we want to do is keep the array sorted.

Assuming the array is already sorted — and it is at first when all particles are inactive — the only
time it can become unsorted is when a particle has been activated or deactivated. We can handle
those two cases pretty easily. When a particle gets activated, we move it up to the end of the active
particles by swapping it with the first inactive one:

void ParticleSystem::activateParticle(int index)
{
 // Shouldn't already be active!
 assert(index >= numActive_);

 // Swap it with the first inactive particle
 // right after the active ones.
 Particle temp = particles_[numActive_];
 particles_[numActive_] = particles_[index];
 particles_[index] = temp;

 // Now there's one more.
 numActive_++;
}

To deactivate a particle, we just do the opposite:

void ParticleSystem::deactivateParticle(int index)
{
 // Shouldn't already be inactive!
 assert(index < numActive_);

 // There's one fewer.
 numActive_--;

 // Swap it with the last active particle
 // right before the inactive ones.
 Particle temp = particles_[numActive_];
 particles_[numActive_] = particles_[index];
 particles_[index] = temp;
}

Lots of programmers (myself included) have developed allergies to moving things around in memory.
Schlepping a bunch of bytes around feels heavyweight compared to assigning a pointer. But when you
add in the cost of traversing that pointer, it turns out that our intuition is sometimes wrong. In some
cases, it’s cheaper to push things around in memory if it helps you keep the cache full.

This is your friendly reminder to profile when making these kinds of decisions.

There’s a neat consequence of keeping the particles sorted by their active state — we don’t need to
store an active flag in each particle at all. It can be inferred by its position in the array and the
numActive_ counter. This makes our particle objects smaller, which means we can pack more in our
cache lines, and that makes them even faster.

It’s not all rosy, though. As you can see from the API, we’ve lost a bit of object orientation here. The
Particle class no longer controls its own active state. You can’t call some activate() method on
it since it doesn’t know its index. Instead, any code that wants to activate particles needs access to the
particle system.

In this case, I’m OK with ParticleSystem and Particle being tightly tied like this. I think of them
as a single concept spread across two physical classes. It just means accepting the idea that particles
are only meaningful in the context of some particle system. Also, in this case it’s likely to be the
particle system that will be spawning and killing particles anyway.

Hot/cold splitting

OK, this is the last example of a simple technique for making your cache happier. Say we’ve got an
AI component for some game entity. It has some state in it — the animation it’s currently playing, a

goal position its heading towards, energy level, etc. — stuff it checks and tweaks every single frame.
Something like:

class AIComponent
{
public:
 void update() { /* ... */ }

private:
 Animation* animation_;
 double energy_;
 Vector goalPos_;
};

But it also has some state for rarer eventualities. It stores some data describing what loot it drops
when it has an unfortunate encounter with the noisy end of a shotgun. That drop data is only used once
in the entity’s lifetime, right at its bitter end:

class AIComponent
{
public:
 void update() { /* ... */ }

private:
 // Previous fields...
 LootType drop_;
 int minDrops_;
 int maxDrops_;
 double chanceOfDrop_;
};

Assuming we followed the earlier patterns, when we update these AI components, we walk through a
nice packed, contiguous array of data. But that data includes all of the loot drop information. That
makes each component bigger, which reduces the number of components we can fit in a cache line.
We get more cache misses because the total memory we walk over is larger. The loot data gets pulled
into the cache for every component in every frame, even though we aren’t even touching it.

The solution for this is called “hot/cold splitting”. The idea is to break our data structure into two
separate pieces. The first holds the “hot” data, the state we need to touch every frame. The other
piece is the “cold” data, everything else that gets used less frequently.

The hot piece is the main AI component. It’s the one we need to use the most, so we don’t want to
chase a pointer to find it. The cold component can be off to the side, but we still need to get to it, so
we give the hot component a pointer to it, like so:

class AIComponent
{
public:
 // Methods...
private:
 Animation* animation_;
 double energy_;
 Vector goalPos_;

 LootDrop* loot_;
};

class LootDrop

{
 friend class AIComponent;
 LootType drop_;
 int minDrops_;
 int maxDrops_;
 double chanceOfDrop_;
};

Now when we’re walking the AI components every frame, the only data that gets loaded into the
cache is stuff we are actually processing (with the exception of that one little pointer to the cold data).

We could conceivably ditch the pointer too by having parallel arrays for the hot and cold components. Then we can find the cold AI
data for a component since both pieces will be at the same index in their respective arrays.

You can see how this starts to get fuzzy, though. In my example here, it’s pretty obvious which data
should be hot and cold, but in a real game it’s rarely so clear-cut. What if you have fields that are
used when an entity is in a certain mode but not in others? What if entities use a certain chunk of data
only when they’re in certain parts of the level?

Doing this kind of optimization is somewhere between a black art and a rathole. It’s easy to get
sucked in and spend endless time pushing data around to see what speed difference it makes. It will
take practice to get a handle on where to spend your effort.

Design Decisions
This pattern is really about a mindset — it’s getting you to think about your data’s arrangement in
memory as a key part of your game’s performance story. The actual concrete design space is wide
open. You can let data locality affect your whole architecture, or maybe it’s just a localized pattern
you apply to a few core data structures.

The biggest questions you’ll need to answer are when and where you apply this pattern, but here are a
couple of others that may come up.

Noel Llopis’ famous article that got a lot more people thinking about designing games around cache usage calls this “data-oriented
design”.

How do you handle polymorphism?

Up to this point, we’ve avoided subclassing and virtual methods. We have assumed we have nice
packed arrays of homogenous objects. That way, we know they’re all the exact same size. But
polymorphism and dynamic dispatch are useful tools too. How do we reconcile this?

Don’t:

The simplest answer is to avoid subclassing, or at least avoid it in places where you’re
optimizing for cache usage. Software engineer culture is drifting away from heavy use of
inheritance anyway.

One way to keep much of the flexibility of polymorphism without using subclassing is through the Type Object pattern.

It’s safe and easy. You know exactly what class you’re dealing with, and all objects are
obviously the same size.

It’s faster. Dynamic dispatch means looking up the method in the vtable and then traversing
that pointer to get to the actual code. While the cost of this varies widely across different
hardware, there is some cost to dynamic dispatch.

As usual, the only absolute is that there are no absolutes. In most cases, a C++ compiler will require an indirection for a virtual
method call. But in some cases, the compiler may be able to do devirtualization and statically call the right method if it knows
what concrete type the receiver is. Devirtualization is more common in just-in-time compilers for languages like Java and
JavaScript.

It’s inflexible. Of course, the reason we use dynamic dispatch is because it gives us a
powerful way to vary behavior between objects. If you want different entities in your game
to have their own rendering styles or their own special moves and attacks, virtual methods
are a proven way to model that. Having to instead stuff all of that code into a single non-
virtual method that does something like a big switch gets messy quickly.

Use separate arrays for each type:

http://gamesfromwithin.com/data-oriented-design

We use polymorphism so that we can invoke behavior on an object whose type we don’t know.
In other words, we have a mixed bag of stuff, and we want each object in there to do its own
thing when we tell it to go.

But that raises the question of why mix the bag to begin with? Instead, why not maintain separate,
homogenous collections for each type?

It keeps objects tightly packed. Since each array only contains objects of one class, there’s
no padding or other weirdness.

You can statically dispatch. Once you’ve got objects partitioned by type, you don’t need
polymorphism at all any more. You can use regular, non-virtual method calls.

You have to keep track of a bunch of collections. If you have a lot of different object types,
the overhead and complexity of maintaining separate arrays for each can be a chore.

You have to be aware of every type. Since you have to maintain separate collections for
each type, you can’t be decoupled from the set of classes. Part of the magic of
polymorphism is that it’s open-ended — code that works with an interface can be
completely decoupled from the potentially large set of types that implement that interface.

Use a collection of pointers:

If you weren’t worried about caching, this is the natural solution. Just have an array of pointers
to some base class or interface type. You get all the polymorphism you could want, and objects
can be whatever size they want.

It’s flexible. The code that consumes the collection can work with objects of any type as
long as it supports the interface you care about. It’s completely open-ended.

It’s less cache-friendly. Of course, the whole reason we’re discussing other options here is
because this means cache-unfriendly pointer indirection. But, remember, if this code isn’t
performance-critical, that’s probably OK.

How are game entities defined?

If you use this pattern in tandem with the Component pattern, you’ll have nice contiguous arrays for
all of the components that make up your game entities. The game loop will be iterating over those
directly, so the object for the game entity itself is less important, but it’s still useful in other parts of
the codebase where you want to work with a single conceptual “entity”.

The question then is how should it be represented? How does it keep track of its components?

If game entities are classes with pointers to their components:

This is what our first example looked like. It’s sort of the vanilla OOP solution. You’ve got a

class for GameEntity, and it has pointers to the components it owns. Since they’re just pointers,
it’s agnostic about where and how those components are organized in memory.

You can store components in contiguous arrays. Since the game entity doesn’t care where
its components are, you can organize them in a nice packed array to optimize iterating over
them.

Given an entity, you can easily get to its components. They’re just a pointer indirection
away.

Moving components in memory is hard. When components get enabled or disabled, you
may want to move them around in the array to keep the active ones up front and contiguous.
If you move a component while the entity has a raw pointer to it, though, that pointer gets
broken if you aren’t careful. You’ll have to make sure to update the entity’s pointer at the
same time.

If game entities are classes with IDs for their components:

The challenge with raw pointers to components is that it makes it harder to move them around in
memory. You can address that by using something more abstract: an ID or index that can be used
to look up a component.

The actual semantics of the ID and lookup process are up to you. It could be as simple as storing
a unique ID in each component and walking the array, or more complex like a hash table that
maps IDs to their current index in the component array.

It’s more complex. Your ID system doesn’t have to be rocket science, but it’s still more
work than a basic pointer. You’ll have to implement and debug it, and there will be
memory overhead for bookkeeping.

It’s slower. It’s hard to beat traversing a raw pointer. There may be some searching or
hashing involved to get from an entity to one of its components.

You’ll need access to the component “manager”. The basic idea is that you have some
abstract ID that identifies a component. You can use it to get a reference to the actual
component object. But to do that, you need to hand that ID to something that can actually
find the component. That will be the class that wraps your raw contiguous array of
component objects.

With raw pointers, if you have a game entity, you can find its components. With this, you
need the game entity and the component registry too.

You may be thinking, “I’ll just make it a singleton! Problem solved!” Well, sort of. You might want to check out the
chapter on those first.

If the game entity is itself just an ID:

This is a newer style that some game engines use. Once you’ve moved all of your entity’s
behavior and state out of the main class and into components, what’s left? It turns out, not much.
The only thing an entity does is bind a set of components together. It exists just to say this AI
component and this physics component and this render component define one living entity in the
world.

That’s important because components interact. The render component needs to know where the
entity is, which may be a property of the physics component. The AI component wants to move
the entity, so it needs to apply a force to the physics component. Each component needs a way to
get the other sibling components of the entity it’s a part of.

Some smart people realized all you need for that is an ID. Instead of the entity knowing its
components, the components know their entity. Each component knows the ID of the entity that
owns it. When the AI component needs the physics component for its entity, it simply asks for the
physics component with the same entity ID that it holds.

Your entity classes disappear entirely, replaced by a glorified wrapper around a number.

Entities are tiny. When you want to pass around a reference to a game entity, it’s just a
single value.

Entities are empty. Of course, the downside of moving everything out of entities is that you
have to move everything out of entities. You no longer have a place to put non-component-
specific state or behavior. This style doubles down on the Component pattern.

You don’t have to manage their lifetime. Since entities are just dumb value types, they
don’t need to be explicitly allocated and freed. An entity implicitly “dies” when all of its
components are destroyed.

Looking up a component for an entity may be slow. This is the same problem as the
previous answer, but in the opposite direction. To find a component for some entity, you
have to map an ID to an object. That process may be costly.

This time, though, it is performance-critical. Components often interact with their siblings
during update, so you will need to find components frequently. One solution is to make the
“ID” of an entity the index of the component in its array.

If every entity has the same set of components, then your component arrays are completely
parallel. The component in slot three of the AI component array will be for the same entity
that the physics component in slot three of its array is associated with.

Keep in mind, though, that this forces you to keep those arrays in parallel. That’s hard if
you want to start sorting or packing them by different criteria. You may have some entities
with disabled physics and others that are invisible. There’s no way to sort the physics and
render component arrays optimally for both cases if they have to stay in sync with each
other.

See Also
Much of this chapter revolves around the Component pattern, and that pattern is definitely one of
the most common data structures that gets optimized for cache usage. In fact, using the
Component pattern makes this optimization easier. Since entities are updated one “domain” (AI,
physics, etc.) at a time, splitting them out into components lets you slice a bunch of entities into
the right pieces to be cache-friendly.

But that doesn’t mean you can only use this pattern with components! Any time you have
performance-critical code that touches a lot of data, it’s important to think about locality.

Tony Albrecht’s “Pitfalls of Object-Oriented Programming” is probably the most widely-read
introduction to designing your game’s data structures for cache-friendliness. It made a lot more
people (including me!) aware of how big of a deal this is for performance.

Around the same time, Noel Llopis wrote a very influential blog post on the same topic.

This pattern almost invariably takes advantage of a contiguous array of homogenous objects.
Over time, you’ll very likely be adding and removing objects from that array. The Object Pool
pattern is about exactly that.

The Artemis game engine is one of the first and better-known frameworks that uses simple IDs
for game entities.

http://research.scee.net/files/presentations/gcapaustralia09/Pitfalls_of_Object_Oriented_Programming_GCAP_09.pdf
http://gamesfromwithin.com/data-oriented-design
http://gamadu.com/artemis/

Dirty Flag

Intent
Avoid unnecessary work by deferring it until the result is needed.

Motivation
Many games have something called a scene graph. This is a big data structure that contains all of the
objects in the world. The rendering engine uses this to determine where to draw stuff on the screen.

At its simplest, a scene graph is just a flat list of objects. Each object has a model, or some other
graphic primitive, and a transform. The transform describes the object’s position, rotation, and scale
in the world. To move or turn an object, we simply change its transform.

The mechanics of how this transform is stored and manipulated are unfortunately out of scope here. The comically abbreviated
summary is that it’s a 4x4 matrix. You can make a single transform that combines two transforms — for example, translating and then
rotating an object — by multiplying the two matrices.

How and why that works is left as an exercise for the reader.

When the renderer draws an object, it takes the object’s model, applies the transform to it, and then
renders it there in the world. If we had a scene bag and not a scene graph, that would be it, and life
would be simple.

However, most scene graphs are hierarchical. An object in the graph may have a parent object that it
is anchored to. In that case, its transform is relative to the parent’s position and isn’t an absolute
position in the world.

For example, imagine our game world has a pirate ship at sea. Atop the ship’s mast is a crow’s nest.
Hunched in that crow’s nest is a pirate. Clutching the pirate’s shoulder is a parrot. The ship’s local
transform positions the ship in the sea. The crow’s nest’s transform positions the nest on the ship, and
so on.

Programmer art!

This way, when a parent object moves, its children move with it automatically. If we change the local
transform of the ship, the crow’s nest, pirate, and parrot go along for the ride. It would be a total
headache if, when the ship moved, we had to manually adjust the transforms of all the objects on it to
keep them from sliding off.

To be honest, when you are at sea you do have to keep manually adjusting your position to keep from sliding off. Maybe I should have
chosen a drier example.

But to actually draw the parrot on screen, we need to know its absolute position in the world. I’ll call
the parent-relative transform the object’s local transform. To render an object, we need to know its
world transform.

Local and world transforms

Calculating an object’s world transform is pretty straightforward — you just walk its parent chain
starting at the root all the way down to the object, combining transforms as you go. In other words, the
parrot’s world transform is:

In the degenerate case where the object has no parent, its local and world transforms are equivalent.

We need the world transform for every object in the world every frame, so even though there are only
a handful of matrix multiplications per model, it’s on the hot code path where performance is critical.
Keeping them up to date is tricky because when a parent object moves, that affects the world
transform of itself and all of its children, recursively.

The simplest approach is to calculate transforms on the fly while rendering. Each frame, we
recursively traverse the scene graph starting at the top of the hierarchy. For each object, we calculate
its world transform right then and draw it.

But this is terribly wasteful of our precious CPU juice! Many objects in the world are not moving
every frame. Think of all of the static geometry that makes up the level. Recalculating their world
transforms each frame even though they haven’t changed is a waste.

Cached world transforms

The obvious answer is to cache it. In each object, we store its local transform and its derived world

transform. When we render, we only use the precalculated world transform. If the object never
moves, the cached transform is always up to date and everything’s happy.

When an object does move, the simple approach is to refresh its world transform right then. But don’t
forget the hierarchy! When a parent moves, we have to recalculate its world transform and all of its
children’s, recursively.

Imagine some busy gameplay. In a single frame, the ship gets tossed on the ocean, the crow’s nest
rocks in the wind, the pirate leans to the edge, and the parrot hops onto his head. We changed four
local transforms. If we recalculate world transforms eagerly whenever a local transform changes,
what ends up happening?

You can see on the lines marked ★ that we’re recalculating the parrot’s world transform four times when we only need the result of
the final one.

We only moved four objects, but we did ten world transform calculations. That’s six pointless
calculations that get thrown out before they are ever used by the renderer. We calculated the parrot’s
world transform four times, but it is only rendered once.

The problem is that a world transform may depend on several local transforms. Since we recalculate
immediately each time one of the transforms changes, we end up recalculating the same transform
multiple times when more than one of the local transforms it depends on changes in the same frame.

Deferred recalculation

We’ll solve this by decoupling changing local transforms from updating the world transforms. This
lets us change a bunch of local transforms in a single batch and then recalculate the affected world
transform just once after all of those modifications are done, right before we need it to render.

It’s interesting how much of software architecture is intentionally engineering a little slippage.

To do this, we add a flag to each object in the graph. “Flag” and “bit” are synonymous in
programming — they both mean a single micron of data that can be in one of two states. We call those
“true” and “false”, or sometimes “set” and “cleared”. I’ll use all of these interchangeably.

When the local transform changes, we set it. When we need the object’s world transform, we check
the flag. If it’s set, we calculate the world transform and then clear the flag. The flag represents, “Is
the world transform out of date?” For reasons that aren’t entirely clear, the traditional name for this
“out-of-date-ness” is “dirty”. Hence: a dirty flag. “Dirty bit” is an equally common name for this
pattern, but I figured I’d stick with the name that didn’t seem as prurient.

Wikipedia’s editors don’t have my level of self-control and went with dirty bit.

If we apply this pattern and then move all of the objects in our previous example, the game ends up
doing:

That’s the best you could hope to do — the world transform for each affected object is calculated

http://en.wikipedia.org/wiki/Dirty_bit

exactly once. With only a single bit of data, this pattern does a few things for us:

It collapses modifications to multiple local transforms along an object’s parent chain into a
single recalculation on the object.

It avoids recalculation on objects that didn’t move.

And a minor bonus: if an object gets removed before it’s rendered, it doesn’t calculate its world
transform at all.

The Pattern
A set of primary data changes over time. A set of derived data is determined from this using some
expensive process. A “dirty” flag tracks when the derived data is out of sync with the primary data.
It is set when the primary data changes. If the flag is set when the derived data is needed, then it is
reprocessed and the flag is cleared. Otherwise, the previous cached derived data is used.

When to Use It
Compared to some other patterns in this book, this one solves a pretty specific problem. Also, like
most optimizations, you should only reach for it when you have a performance problem big enough to
justify the added code complexity.

Dirty flags are applied to two kinds of work: calculation and synchronization. In both cases, the
process of going from the primary data to the derived data is time-consuming or otherwise costly.

In our scene graph example, the process is slow because of the amount of math to perform. When
using this pattern for synchronization, on the other hand, it’s more often that the derived data is
somewhere else — either on disk or over the network on another machine — and simply getting it
from point A to point B is what’s expensive.

There are a couple of other requirements too:

The primary data has to change more often than the derived data is used. This pattern
works by avoiding processing derived data when a subsequent primary data change would
invalidate it before it gets used. If you find yourself always needing that derived data after every
single modification to the primary data, this pattern can’t help.

It should be hard to update incrementally. Let’s say the pirate ship in our game can only carry
so much booty. We need to know the total weight of everything in the hold. We could use this
pattern and have a dirty flag for the total weight. Every time we add or remove some loot, we set
the flag. When we need the total, we add up all of the booty and clear the flag.

But a simpler solution is to keep a running total. When we add or remove an item, just add or
remove its weight from the current total. If we can “pay as we go” like this and keep the derived
data updated, then that’s often a better choice than using this pattern and calculating the derived
data from scratch when needed.

This makes it sound like dirty flags are rarely appropriate, but you’ll find a place here or there where
they help. Searching your average game codebase for the word “dirty” will often turn up uses of this
pattern.

From my research, it also turns up a lot of comments apologizing for “dirty” hacks.

Keep in Mind
Even after you’ve convinced yourself this pattern is a good fit, there are a few wrinkles that can cause
you some discomfort.

There is a cost to deferring for too long

This pattern defers some slow work until the result is actually needed, but when it is, it’s often
needed right now. But the reason we’re using this pattern to begin with is because calculating that
result is slow!

This isn’t a problem in our example because we can still calculate world coordinates fast enough to
fit within a frame, but you can imagine other cases where the work you’re doing is a big chunk that
takes noticeable time to chew through. If the game doesn’t start chewing until right when the player
expects to see the result, that can cause an unpleasant visible pause.

Another problem with deferring is that if something goes wrong, you may fail to do the work at all.
This can be particularly problematic when you’re using this pattern to save some state to a more
persistent form.

For example, text editors know if your document has “unsaved changes”. That little bullet or star in
your file’s title bar is literally the dirty flag visualized. The primary data is the open document in
memory, and the derived data is the file on disk.

Many programs don’t save to disk until either the document is closed or the application is exited.
That’s fine most of the time, but if you accidentally kick the power cable out, there goes your
masterpiece.

Editors that auto-save a backup in the background are compensating specifically for this shortcoming.
The auto-save frequency is a point on the continuum between not losing too much work when a crash
occurs and not thrashing the file system too much by saving all the time.

This mirrors the different garbage collection strategies in systems that automatically manage memory. Reference counting frees
memory the second it’s no longer needed, but it burns CPU time updating ref counts eagerly every time references are changed.

Simple garbage collectors defer reclaiming memory until it’s really needed, but the cost is the dreaded “GC pause” that can freeze

your entire game until the collector is done scouring the heap.

In between the two are more complex systems like deferred ref-counting and incremental GC that reclaim memory less eagerly than
pure ref-counting but more eagerly than stop-the-world collectors.

You have to make sure to set the flag every time the state changes

Since the derived data is calculated from the primary data, it’s essentially a cache. Whenever you
have cached data, the trickiest aspect of it is cache invalidation — correctly noting when the cache
is out of sync with its source data. In this pattern, that means setting the dirty flag when any primary
data changes.

Phil Karlton famously said, “There are only two hard things in Computer Science: cache invalidation and naming things.”

Miss it in one place, and your program will incorrectly use stale derived data. This leads to confused
players and bugs that are very hard to track down. When you use this pattern, you’ll have to take care
that any code that modifies the primary state also sets the dirty flag.

One way to mitigate this is by encapsulating modifications to the primary data behind some interface.
If anything that can change the state goes through a single narrow API, you can set the dirty flag there
and rest assured that it won’t be missed.

You have to keep the previous derived data in memory

When the derived data is needed and the dirty flag isn’t set, it uses the previously calculated data.
This is obvious, but that does imply that you have to keep that derived data around in memory in case
you end up needing it later.

This isn’t much of an issue when you’re using this pattern to synchronize the primary state to some other place. In that case, the
derived data isn’t usually in memory at all.

If you weren’t using this pattern, you could calculate the derived data on the fly whenever you needed
it, then discard it when you were done. That avoids the expense of keeping it cached in memory at the
cost of having to do that calculation every time you need the result.

Like many optimizations, then, this pattern trades memory for speed. In return for keeping the
previously calculated data in memory, you avoid having to recalculate it when it hasn’t changed. This
trade-off makes sense when the calculation is slow and memory is cheap. When you’ve got more time
than memory on your hands, it’s better to calculate it as needed.

Conversely, compression algorithms make the opposite trade-off: they optimize space at the expense of the processing time needed to
decompress.

Sample Code
Let’s assume we’ve met the surprisingly long list of requirements and see how the pattern looks in
code. As I mentioned before, the actual math behind transform matrices is beyond the humble aims of
this book, so I’ll just encapsulate that in a class whose implementation you can presume exists
somewhere out in the æther:

class Transform
{
public:
 static Transform origin();

 Transform combine(Transform& other);
};

The only operation we need here is combine() so that we can get an object’s world transform by
combining all of the local transforms along its parent chain. It also has a method to get an “origin”
transform — basically an identity matrix that means no translation, rotation, or scaling at all.

Next, we’ll sketch out the class for an object in the scene graph. This is the bare minimum we need
before applying this pattern:

class GraphNode
{
public:
 GraphNode(Mesh* mesh)
 : mesh_(mesh),
 local_(Transform::origin())
 {}

private:
 Transform local_;
 Mesh* mesh_;

 GraphNode* children_[MAX_CHILDREN];
 int numChildren_;
};

Each node has a local transform which describes where it is relative to its parent. It has a mesh which
is the actual graphic for the object. (We’ll allow mesh_ to be NULL too to handle non-visual nodes
that are used just to group their children.) Finally, each node has a possibly empty collection of child
nodes.

With this, a “scene graph” is really only a single root GraphNode whose children (and grandchildren,
etc.) are all of the objects in the world:

GraphNode* graph_ = new GraphNode(NULL);
// Add children to root graph node...

In order to render a scene graph, all we need to do is traverse that tree of nodes, starting at the root,
and call the following function for each node’s mesh with the right world transform:

void renderMesh(Mesh* mesh, Transform transform);

We won’t implement this here, but if we did, it would do whatever magic the renderer needs to draw
that mesh at the given location in the world. If we can call that correctly and efficiently on every node
in the scene graph, we’re happy.

An unoptimized traversal

To get our hands dirty, let’s throw together a basic traversal for rendering the scene graph that
calculates the world positions on the fly. It won’t be optimal, but it will be simple. We’ll add a new
method to GraphNode:

void GraphNode::render(Transform parentWorld)
{
 Transform world = local_.combine(parentWorld);

 if (mesh_) renderMesh(mesh_, world);

 for (int i = 0; i < numChildren_; i++)
 {
 children_[i]->render(world);
 }
}

We pass the world transform of the node’s parent into this using parentWorld. With that, all that’s
left to get the correct world transform of this node is to combine that with its own local transform.
We don’t have to walk up the parent chain to calculate world transforms because we calculate as we
go while walking down the chain.

We calculate the node’s world transform and store it in world, then we render the mesh, if we have
one. Finally, we recurse into the child nodes, passing in this node’s world transform. All in all, it’s a
tight, simple recursive method.

To draw an entire scene graph, we kick off the process at the root node:

graph_->render(Transform::origin());

Let’s get dirty

So this code does the right thing — it renders all the meshes in the right place — but it doesn’t do it
efficiently. It’s calling local_.combine(parentWorld) on every node in the graph, every frame.
Let’s see how this pattern fixes that. First, we need to add two fields to GraphNode:

class GraphNode
{
public:
 GraphNode(Mesh* mesh)
 : mesh_(mesh),
 local_(Transform::origin()),
 dirty_(true)
 {}

 // Other methods...

private:
 Transform world_;
 bool dirty_;
 // Other fields...
};

The world_ field caches the previously calculated world transform, and dirty_, of course, is the
dirty flag. Note that the flag starts out true. When we create a new node, we haven’t calculated its
world transform yet. At birth, it’s already out of sync with the local transform.

The only reason we need this pattern is because objects can move, so let’s add support for that:

void GraphNode::setTransform(Transform local)
{
 local_ = local;
 dirty_ = true;
}

The important part here is that it sets the dirty flag too. Are we forgetting anything? Right — the child
nodes!

When a parent node moves, all of its children’s world coordinates are invalidated too. But here, we
aren’t setting their dirty flags. We could do that, but that’s recursive and slow. Instead, we’ll do
something clever when we go to render. Let’s see:

void GraphNode::render(Transform parentWorld, bool dirty)
{
 dirty |= dirty_;
 if (dirty)
 {
 world_ = local_.combine(parentWorld);
 dirty_ = false;
 }

 if (mesh_) renderMesh(mesh_, world_);

 for (int i = 0; i < numChildren_; i++)
 {
 children_[i]->render(world_, dirty);
 }
}

There’s a subtle assumption here that the if check is faster than a matrix multiply. Intuitively, you would think it is; surely testing a
single bit is faster than a bunch of floating point arithmetic.

However, modern CPUs are fantastically complex. They rely heavily on pipelining — queueing up a series of sequential instructions.
A branch like our if here can cause a branch misprediction and force the CPU to lose cycles refilling the pipeline.

The Data Locality chapter has more about how modern CPUs try to go faster and how you can avoid tripping them up like this.

This is similar to the original naïve implementation. The key changes are that we check to see if the
node is dirty before calculating the world transform and we store the result in a field instead of a
local variable. When the node is clean, we skip combine() completely and use the old-but-still-
correct world_ value.

The clever bit is that dirty parameter. That will be true if any node above this node in the parent
chain was dirty. In much the same way that parentWorld updates the world transform incrementally

as we traverse down the hierarchy, dirty tracks the dirtiness of the parent chain.

This lets us avoid having to recursively mark each child’s dirty_ flag in setTransform(). Instead,
we pass the parent’s dirty flag down to its children when we render and look at that too to see if we
need to recalculate the world transform.

The end result here is exactly what we want: changing a node’s local transform is just a couple of
assignments, and rendering the world calculates the exact minimum number of world transforms that
have changed since the last frame.

Note that this clever trick only works because render() is the only thing in GraphNode that needs an up-to-date world transform. If
other things accessed it, we’d have to do something different.

Design Decisions
This pattern is fairly specific, so there are only a couple of knobs to twiddle:

When is the dirty flag cleaned?

When the result is needed:

It avoids doing calculation entirely if the result is never used. For primary data that
changes much more frequently than the derived data is accessed, this can be a big win.

If the calculation is time-consuming, it can cause a noticeable pause. Postponing the
work until the player is expecting to see the result can affect their gameplay experience. It’s
often fast enough that this isn’t a problem, but if it is, you’ll have to do the work earlier.

At well-defined checkpoints:

Sometimes, there is a point in time or in the progression of the game where it’s natural to do the
deferred processing. For example, we may want to save the game only when the pirate sails into
port. Or the sync point may not be part of the game mechanics. We may just want to hide the
work behind a loading screen or a cut scene.

Doing the work doesn’t impact the user experience. Unlike the previous option, you can
often give something to distract the player while the game is busy processing.

You lose control over when the work happens. This is sort of the opposite of the earlier
point. You have micro-scale control over when you process, and can make sure the game
handles it gracefully.

What you can’t do is ensure the player actually makes it to the checkpoint or meets
whatever criteria you’ve defined. If they get lost or the game gets in a weird state, you can
end up deferring longer than you expect.

In the background:

Usually, you start a fixed timer on the first modification and then process all of the changes that
happen between then and when the timer fires.

The term in human-computer interaction for an intentional delay between when a program receives user input and when it
responds is hysteresis.

You can tune how often the work is performed. By adjusting the timer interval, you can
ensure it happens as frequently (or infrequently) as you want.

You can do more redundant work. If the primary state only changes a tiny amount during

http://en.wikipedia.org/wiki/Hysteresis

the timer’s run, you can end up processing a large chunk of mostly unchanged data.

You need support for doing work asynchronously. Processing the data “in the background”
implies that the player can keep doing whatever it is that they’re doing at the same time.
That means you’ll likely need threading or some other kind of concurrency support so that
the game can work on the data while it’s still being played.

Since the player is likely interacting with the same primary state that you’re processing,
you’ll need to think about making that safe for concurrent modification too.

How fine-grained is your dirty tracking?

Imagine our pirate game lets players build and customize their pirate ship. Ships are automatically
saved online so the player can resume where they left off. We’re using dirty flags to determine which
decks of the ship have been fitted and need to be sent to the server. Each chunk of data we send to the
server contains some modified ship data and a bit of metadata describing where on the ship this
modification occurred.

If it’s more fine-grained:

Say you slap a dirty flag on each tiny plank of each deck.

You only process data that actually changed. You’ll send exactly the facets of the ship that
were modified to the server.

If it’s more coarse-grained:

Alternatively, we could associate a dirty bit with each deck. Changing anything on it marks the
entire deck dirty.

I could make some terrible joke about it needing to be swabbed here, but I’ll refrain.

You end up processing unchanged data. Add a single barrel to a deck and you’ll have to
send the whole thing to the server.

Less memory is used for storing dirty flags. Add ten barrels to a deck and you only need a
single bit to track them all.

Less time is spent on fixed overhead. When processing some changed data, there’s often a
bit of fixed work you have to do on top of handling the data itself. In the example here,
that’s the metadata required to identify where on the ship the changed data is. The bigger
your processing chunks, the fewer of them there are, which means the less overhead you
have.

See Also
This pattern is common outside of games in browser-side web frameworks like Angular. They
use dirty flags to track which data has been changed in the browser and needs to be pushed up to
the server.

Physics engines track which objects are in motion and which are resting. Since a resting body
won’t move until an impulse is applied to it, they don’t need processing until they get touched.
This “is moving” bit is a dirty flag to note which objects have had forces applied and need to
have their physics resolved.

http://angularjs.org/

Object Pool

Intent
Improve performance and memory use by reusing objects from a fixed pool instead of allocating
and freeing them individually.

Motivation
We’re working on the visual effects for our game. When the hero casts a spell, we want a shimmer of
sparkles to burst across the screen. This calls for a particle system, an engine that spawns little
sparkly graphics and animates them until they wink out of existence.

Since a single wave of the wand could cause hundreds of particles to be spawned, our system needs
to be able to create them very quickly. More importantly, we need to make sure that creating and
destroying these particles doesn’t cause memory fragmentation.

The curse of fragmentation

Programming for a game console or mobile device is closer to embedded programming than
conventional PC programming in many ways. Memory is scarce, users expect games to be rock solid,
and efficient compacting memory managers are rarely available. In this environment, memory
fragmentation is deadly.

Fragmentation means the free space in our heap is broken into smaller pieces of memory instead of
one large open block. The total memory available may be large, but the largest contiguous region
might be painfully small. Say we’ve got fourteen bytes free, but it’s fragmented into two seven-byte
pieces with a chunk of in-use memory between them. If we try to allocate a twelve-byte object, we’ll
fail. No more sparklies on screen.

It’s like trying to parallel park on a busy street where the already parked cars are spread out a bit too far. If they’d bunch up, there
would be room, but the free space is fragmented into bits of open curb between half a dozen cars.

Here’s how a heap becomes fragmented and how it can cause an allocation to fail even where there’s theoretically enough memory
available.

Even if fragmentation is infrequent, it can still gradually reduce the heap to an unusable foam of open
holes and filled-in crevices, ultimately hosing the game completely.

Most console makers require games to pass “soak tests” where they leave the game running in demo mode for several days. If the
game crashes, they don’t allow it to ship. While soak tests sometimes fail because of a rarely occurring bug, it’s usually creeping
fragmentation or memory leakage that brings the game down.

The best of both worlds

Because of fragmentation and because allocation may be slow, games are very careful about when
and how they manage memory. A simple solution is often best — grab a big chunk of memory when
the game starts, and don’t free it until the game ends. But this is a pain for systems where we need to
create and destroy things while the game is running.

An object pool gives us the best of both worlds. To the memory manager, we’re just allocating one
big hunk of memory up front and not freeing it while the game is playing. To the users of the pool, we
can freely allocate and deallocate objects to our heart’s content.

The Pattern
Define a pool class that maintains a collection of reusable objects. Each object supports an “in use”
query to tell if it is currently “alive”. When the pool is initialized, it creates the entire collection of
objects up front (usually in a single contiguous allocation) and initializes them all to the “not in use”
state.

When you want a new object, ask the pool for one. It finds an available object, initializes it to “in
use”, and returns it. When the object is no longer needed, it is set back to the “not in use” state. This
way, objects can be freely created and destroyed without needing to allocate memory or other
resources.

When to Use It
This pattern is used widely in games for obvious things like game entities and visual effects, but it is
also used for less visible data structures such as currently playing sounds. Use Object Pool when:

You need to frequently create and destroy objects.

Objects are similar in size.

Allocating objects on the heap is slow or could lead to memory fragmentation.

Each object encapsulates a resource such as a database or network connection that is expensive
to acquire and could be reused.

Keep in Mind
You normally rely on a garbage collector or new and delete to handle memory management for you.
By using an object pool, you’re saying, “I know better how these bytes should be handled.” That
means the onus is on you to deal with this pattern’s limitations.

The pool may waste memory on unneeded objects

The size of an object pool needs to be tuned for the game’s needs. When tuning, it’s usually obvious
when the pool is too small (there’s nothing like a crash to get your attention). But also take care that
the pool isn’t too big. A smaller pool frees up memory that could be used for other fun stuff.

Only a fixed number of objects can be active at any one time

In some ways, this is a good thing. Partitioning memory into separate pools for different types of
objects ensures that, for example, a huge sequence of explosions won’t cause your particle system to
eat all of the available memory, preventing something more critical like a new enemy from being
created.

Nonetheless, this also means being prepared for the possibility that your attempt to reuse an object
from the pool will fail because they are all in use. There are a few common strategies to handle this:

Prevent it outright. This is the most common “fix”: tune the pool sizes so that they never
overflow regardless of what the user does. For pools of important objects like enemies or
gameplay items, this is often the right answer. There may be no “right” way to handle the lack of
a free slot to create the big boss when the player reaches the end of the level, so the smart thing
to do is make sure that never happens.

The downside is that this can force you to sit on a lot of memory for object slots that are needed
only for a couple of rare edge cases. Because of this, a single fixed pool size may not be the best
fit for all game states. For instance, some levels may feature effects prominently while others
focus on sound. In such cases, consider having pool sizes tuned differently for each scenario.

Just don’t create the object. This sounds harsh, but it makes sense for cases like our particle
system. If all particles are in use, the screen is probably full of flashing graphics. The user won’t
notice if the next explosion isn’t quite as impressive as the ones currently going off.

Forcibly kill an existing object. Consider a pool for currently playing sounds, and assume you
want to start a new sound but the pool is full. You do not want to simply ignore the new sound
— the user will notice if their magical wand swishes dramatically sometimes and stays
stubbornly silent other times. A better solution is to find the quietest sound already playing and
replace that with our new sound. The new sound will mask the audible cutoff of the previous
sound.

In general, if the disappearance of an existing object would be less noticeable than the absence
of a new one, this may be the right choice.

Increase the size of the pool. If your game lets you be a bit more flexible with memory, you may
be able to increase the size of the pool at runtime or create a second overflow pool. If you do
grab more memory in either of these ways, consider whether or not the pool should contract to
its previous size when the additional capacity is no longer needed.

Memory size for each object is fixed

Most pool implementations store the objects in an array of in-place objects. If all of your objects are
of the same type, this is fine. However, if you want to store objects of different types in the pool, or
instances of subclasses that may add fields, you need to ensure that each slot in the pool has enough
memory for the largest possible object. Otherwise, an unexpectedly large object will stomp over the
next one and trash memory.

At the same time, when your objects vary in size, you waste memory. Each slot needs to be big
enough to accommodate the largest object. If objects are rarely that big, you’re throwing away
memory every time you put a smaller one in that slot. It’s like going through airport security and using
a huge carry-on-sized luggage tray just for your keys and wallet.

When you find yourself burning a lot of memory this way, consider splitting the pool into separate
pools for different sizes of object — big trays for luggage, little trays for pocket stuff.

This is a common pattern for implementing speed-efficient memory managers. The manager has a number of pools of different block
sizes. When you ask it to allocate a block, it finds in an open slot in the pool of the appropriate size and allocates from that pool.

Reused objects aren’t automatically cleared

Most memory managers have a debug feature that will clear freshly allocated or freed memory to
some obvious magic value like 0xdeadbeef. This helps you find painful bugs caused by uninitialized
variables or using memory after it’s freed.

Since our object pool isn’t going through the memory manager any more when it reuses an object, we
lose that safety net. Worse, the memory used for a “new” object previously held an object of the exact
same type. This makes it nearly impossible to tell if you forgot to initialize something when you
created the new object: the memory where the object is stored may already contain almost correct
data from its past life.

Because of this, pay special care that the code that initializes new objects in the pool fully initializes
the object. It may even be worth spending a bit of time adding a debug feature that clears the memory
for an object slot when the object is reclaimed.

I’d be honored if you clear it to 0x1deadb0b.

Unused objects will remain in memory

Object pools are less common in systems that support garbage collection because the memory
manager will usually deal with fragmentation for you. But pools are still useful there to avoid the cost
of allocation and deallocation, especially on mobile devices with slower CPUs and simpler garbage
collectors.

If you do use an object pool in concert with a garbage collector, beware of a potential conflict. Since
the pool doesn’t actually deallocate objects when they’re no longer in use, they remain in memory. If
they contain references to other objects, it will prevent the collector from reclaiming those too. To
avoid this, when a pooled object is no longer in use, clear any references it has to other objects.

Sample Code
Real-world particle systems will often apply gravity, wind, friction, and other physical effects. Our
much simpler sample will only move particles in a straight line for a certain number of frames and
then kill the particle. Not exactly film caliber, but it should illustrate how to use an object pool.

We’ll start with the simplest possible implementation. First up is the little particle class:

class Particle
{
public:
 Particle()
 : framesLeft_(0)
 {}

 void init(double x, double y,
 double xVel, double yVel, int lifetime)
 {
 x_ = x; y_ = y;
 xVel_ = xVel; yVel_ = yVel;
 framesLeft_ = lifetime;
 }

 void animate()
 {
 if (!inUse()) return;

 framesLeft_--;
 x_ += xVel_;
 y_ += yVel_;
 }

 bool inUse() const { return framesLeft_ > 0; }

private:
 int framesLeft_;
 double x_, y_;
 double xVel_, yVel_;
};

The default constructor initializes the particle to “not in use”. A later call to init() initializes the
particle to a live state. Particles are animated over time using the unsurprisingly named animate()
function, which should be called once per frame.

The pool needs to know which particles are available for reuse. It gets this from the particle’s
inUse() function. This function takes advantage of the fact that particles have a limited lifetime and
uses the _framesLeft variable to discover which particles are in use without having to store a
separate flag.

The pool class is also simple:

class ParticlePool
{
public:
 void create(double x, double y,
 double xVel, double yVel, int lifetime);

 void animate()

 {
 for (int i = 0; i < POOL_SIZE; i++)
 {
 particles_[i].animate();
 }
 }

private:
 static const int POOL_SIZE = 100;
 Particle particles_[POOL_SIZE];
};

The create() function lets external code create new particles. The game calls animate() once per
frame, which in turn animates each particle in the pool.

This animate() method is an example of the Update Method pattern.

The particles themselves are simply stored in a fixed-size array in the class. In this sample
implementation, the pool size is hardcoded in the class declaration, but this could be defined
externally by using a dynamic array of a given size or by using a value template parameter.

Creating a new particle is straightforward:

void ParticlePool::create(double x, double y,
 double xVel, double yVel,
 int lifetime)
{
 // Find an available particle.
 for (int i = 0; i < POOL_SIZE; i++)
 {
 if (!particles_[i].inUse())
 {
 particles_[i].init(x, y, xVel, yVel, lifetime);
 return;
 }
 }
}

We iterate through the pool looking for the first available particle. When we find it, we initialize it
and we’re done. Note that in this implementation, if there aren’t any available particles, we simply
don’t create a new one.

That’s all there is to a simple particle system, aside from rendering the particles, of course. We can
now create a pool and create some particles using it. The particles will automatically deactivate
themselves when their lifetime has expired.

This is good enough to ship a game, but keen eyes may have noticed that creating a new particle
requires iterating through (potentially) the entire collection until we find an open slot. If the pool is
very large and mostly full, that can get slow. Let’s see how we can improve that.

Creating a particle has O(n) complexity, for those of us who remember our algorithms class.

A free list

If we don’t want to waste time finding free particles, the obvious answer is to not lose track of them.
We could store a separate list of pointers to each unused particle. Then, when we need to create a
particle, we remove the first pointer from the list and reuse the particle it points to.

Unfortunately, this would require us to maintain an entire separate array with as many pointers as
there are objects in the pool. After all, when we first create the pool, all particles are unused, so the
list would initially have a pointer to every object in the pool.

It would be nice to fix our performance problems without sacrificing any memory. Conveniently,
there is some memory already lying around that we can borrow — the data for the unused particles
themselves.

When a particle isn’t in use, most of its state is irrelevant. Its position and velocity aren’t being used.
The only state it needs is the stuff required to tell if it’s dead. In our example, that’s the _framesLeft
member. All those other bits can be reused. Here’s a revised particle:

class Particle
{
public:
 // ...

 Particle* getNext() const { return state_.next; }
 void setNext(Particle* next) { state_.next = next; }

private:
 int framesLeft_;

 union
 {
 // State when it's in use.
 struct
 {
 double x, y;
 double xVel, yVel;
 } live;

 // State when it's available.
 Particle* next;
 } state_;
};

We’ve moved all of the member variables except for framesLeft_ into a live struct inside a
state_ union. This struct holds the particle’s state when it’s being animated. When the particle is
unused, the other case of the union, the next member, is used. It holds a pointer to the next available
particle after this one.

Unions don’t seem to be used that often these days, so the syntax may be unfamiliar to you. If you’re on a game team, you’ve
probably got a “memory guru”, that beleaguered compatriot whose job it is to come up with a solution when the game has inevitably
blown its memory budget. Ask them about unions. They’ll know all about them and other fun bit-packing tricks.

We can use these pointers to build a linked list that chains together every unused particle in the pool.
We have the list of available particles we need, but we didn’t need to use any additional memory.
Instead, we cannibalize the memory of the dead particles themselves to store the list.

This clever technique is called a free list. For it to work, we need to make sure the pointers are

http://en.wikipedia.org/wiki/Free_list

initialized correctly and are maintained when particles are created and destroyed. And, of course, we
need to keep track of the list’s head:

class ParticlePool
{
 // ...
private:
 Particle* firstAvailable_;
};

When a pool is first created, all of the particles are available, so our free list should thread through
the entire pool. The pool constructor sets that up:

ParticlePool::ParticlePool()
{
 // The first one is available.
 firstAvailable_ = &particles_[0];

 // Each particle points to the next.
 for (int i = 0; i < POOL_SIZE - 1; i++)
 {
 particles_[i].setNext(&particles_[i + 1]);
 }

 // The last one terminates the list.
 particles_[POOL_SIZE - 1].setNext(NULL);
}

Now to create a new particle, we jump directly to the first available one:

O(1) complexity, baby! Now we’re cooking!

void ParticlePool::create(double x, double y,
 double xVel, double yVel,
 int lifetime)
{
 // Make sure the pool isn't full.
 assert(firstAvailable_ != NULL);

 // Remove it from the available list.
 Particle* newParticle = firstAvailable_;
 firstAvailable_ = newParticle->getNext();

 newParticle->init(x, y, xVel, yVel, lifetime);
}

We need to know when a particle dies so we can add it back to the free list, so we’ll change
animate() to return true if the previously live particle gave up the ghost in that frame:

bool Particle::animate()
{
 if (!inUse()) return false;

 framesLeft_--;
 x_ += xVel_;
 y_ += yVel_;

 return framesLeft_ == 0;
}

When that happens, we simply thread it back onto the list:

void ParticlePool::animate()
{
 for (int i = 0; i < POOL_SIZE; i++)
 {
 if (particles_[i].animate())
 {
 // Add this particle to the front of the list.
 particles_[i].setNext(firstAvailable_);
 firstAvailable_ = &particles_[i];
 }
 }
}

There you go, a nice little object pool with constant-time creation and deletion.

Design Decisions
As you’ve seen, the simplest object pool implementation is almost trivial: create an array of objects
and reinitialize them as needed. Production code is rarely that minimal. There are several ways to
expand on that to make the pool more generic, safer to use, or easier to maintain. As you implement
pools in your games, you’ll need to answer these questions:

Are objects coupled to the pool?

The first question you’ll run into when writing an object pool is whether the objects themselves know
they are in a pool. Most of the time they will, but you won’t have that luxury when writing a generic
pool class that can hold arbitrary objects.

If objects are coupled to the pool:

The implementation is simpler. You can simply put an “in use” flag or function in your
pooled object and be done with it.

You can ensure that the objects can only be created by the pool. In C++, a simple way to
do this is to make the pool class a friend of the object class and then make the object’s
constructor private.

class Particle
{
 friend class ParticlePool;

private:
 Particle()
 : inUse_(false)
 {}

 bool inUse_;
};

class ParticlePool
{
 Particle pool_[100];
};

This relationship documents the intended way to use the class and ensures your users don’t
create objects that aren’t tracked by the pool.

You may be able to avoid storing an explicit “in use” flag. Many objects already retain
some state that could be used to tell whether it is alive or not. For example, a particle may
be available for reuse if its current position is offscreen. If the object class knows it may be
used in a pool, it can provide an inUse() method to query that state. This saves the pool
from having to burn some extra memory storing a bunch of “in use” flags.

If objects are not coupled to the pool:

Objects of any type can be pooled. This is the big advantage. By decoupling objects from
the pool, you may be able to implement a generic reusable pool class.

The “in use” state must be tracked outside the objects. The simplest way to do this is by
creating a separate bit field:

template <class TObject>
class GenericPool
{
private:
 static const int POOL_SIZE = 100;

 TObject pool_[POOL_SIZE];
 bool inUse_[POOL_SIZE];
};

What is responsible for initializing the reused objects?

In order to reuse an existing object, it must be reinitialized with new state. A key question here is
whether to reinitialize the object inside the pool class or outside.

If the pool reinitializes internally:

The pool can completely encapsulate its objects. Depending on the other capabilities your
objects need, you may be able to keep them completely internal to the pool. This makes
sure that other code doesn’t maintain references to objects that could be unexpectedly
reused.

The pool is tied to how objects are initialized. A pooled object may offer multiple
functions that initialize it. If the pool manages initialization, its interface needs to support
all of those and forward them to the object.

class Particle
{
 // Multiple ways to initialize.
 void init(double x, double y);
 void init(double x, double y, double angle);
 void init(double x, double y, double xVel, double yVel);
};

class ParticlePool
{
public:
 void create(double x, double y)
 {
 // Forward to Particle...
 }

 void create(double x, double y, double angle)
 {
 // Forward to Particle...
 }

 void create(double x, double y, double xVel, double yVel)
 {
 // Forward to Particle...
 }

};

If outside code initializes the object:

The pool’s interface can be simpler. Instead of offering multiple functions to cover each
way an object can be initialized, the pool can simply return a reference to the new object:

class Particle
{
public:
 // Multiple ways to initialize.
 void init(double x, double y);
 void init(double x, double y, double angle);
 void init(double x, double y, double xVel, double yVel);
};

class ParticlePool
{
public:
 Particle* create()
 {
 // Return reference to available particle...
 }
private:
 Particle pool_[100];
};

The caller can then initialize the object by calling any method the object exposes:

ParticlePool pool;

pool.create()->init(1, 2);
pool.create()->init(1, 2, 0.3);
pool.create()->init(1, 2, 3.3, 4.4);

Outside code may need to handle the failure to create a new object. The previous
example assumes that create() will always successfully return a pointer to an object. If
the pool is full, though, it may return NULL instead. To be safe, you’ll need to check for that
before you try to initialize the object:

Particle* particle = pool.create();
if (particle != NULL) particle->init(1, 2);

See Also
This looks a lot like the Flyweight pattern. Both maintain a collection of reusable objects. The
difference is what “reuse” means. Flyweight objects are reused by sharing the same instance
between multiple owners simultaneously. The Flyweight pattern avoids duplicate memory
usage by using the same object in multiple contexts.

The objects in a pool get reused too, but only over time. “Reuse” in the context of an object pool
means reclaiming the memory for an object after the original owner is done with it. With an
object pool, there isn’t any expectation that an object will be shared within its lifetime.

Packing a bunch of objects of the same type together in memory helps keep your CPU cache full
as the game iterates over those objects. The Data Locality pattern is all about that.

Spatial Partition

Intent
Efficiently locate objects by storing them in a data structure organized by their positions.

Motivation
Games let us visit other worlds, but those worlds typically aren’t so different from our own. They
often share the same basic physics and tangibility of our universe. This is why they can feel real
despite being crafted of mere bits and pixels.

One bit of fake reality that we’ll focus on here is location. Game worlds have a sense of space, and
objects are somewhere in that space. This manifests itself in a bunch of ways. The obvious one is
physics — objects move, collide, and interact — but there are other examples. The audio engine may
take into account where sound sources are relative to the player so that distant sounds are quieter.
Online chat may be restricted to nearby players.

This means your game engine often needs to answer to the question, “What objects are near this
location?” If it has to answer this enough times each frame, it can start to be a performance
bottleneck.

Units on the field of battle

Say we’re making a real-time strategy game. Opposing armies with hundreds of units will clash
together on the field of battle. Warriors need to know which nearby enemy to swing their blades at.
The naïve way to handle this is by looking at every pair of units and seeing how close they are to each
other:

void handleMelee(Unit* units[], int numUnits)
{
 for (int a = 0; a < numUnits - 1; a++)
 {
 for (int b = a + 1; b < numUnits; b++)
 {
 if (units[a]->position() == units[b]->position())
 {
 handleAttack(units[a], units[b]);
 }
 }
 }
}

Here we have a doubly nested loop where each loop is walking all of the units on the battlefield. That
means the number of pairwise tests we have to perform each frame increases with the square of the
number of units. Each additional unit we add has to be compared to all of the previous ones. With a
large number of units, that can spiral out of control.

The inner loop doesn’t actually walk all of the units. It only walks the ones the outer loop hasn’t already visited. This avoids comparing
each pair of units twice, once in each order. If we’ve already handled a collision between A and B, we don’t need to check it again
for B and A.

In Big-O terms, though, this is still O(n²).

Drawing battle lines

The problem we’re running into is that there’s no underlying order to the array of units. To find a unit
near some location, we have to walk the entire array. Now, imagine we simplify our game a bit.
Instead of a 2D battlefield, imagine it’s a 1D battleline.

In that case, we could make things easier on ourselves by sorting the array of units by their positions
on the battleline. Once we do that, we can use something like a binary search to find nearby units
without having to scan the entire array.

A binary search has O(log n) complexity, which means find all battling units goes from O(n²) to O(n log n). Something like a
pigeonhole sort could get that down to O(n).

The lesson is pretty obvious: if we store our objects in a data structure organized by their locations,
we can find them much more quickly. This pattern is about applying that idea to spaces that have more
than one dimension.

http://en.wikipedia.org/wiki/Binary_search
http://en.wikipedia.org/wiki/Pigeonhole_sort

The Pattern
For a set of objects, each has a position in space. Store them in a spatial data structure that
organizes the objects by their positions. This data structure lets you efficiently query for objects at
or near a location. When an object’s position changes, update the spatial data structure so that it
can continue to find the object.

When to Use It
This is a common pattern for storing both live, moving game objects and also the static art and
geometry of the game world. Sophisticated games often have multiple spatial partitions for different
kinds of content.

The basic requirements for this pattern are that you have a set of objects that each have some kind of
position and that you are doing enough queries to find objects by location that your performance is
suffering.

Keep in Mind
Spatial partitions exist to knock an O(n) or O(n²) operation down to something more manageable. The
more objects you have, the more valuable that becomes. Conversely, if your n is small enough, it may
not be worth the bother.

Since this pattern involves organizing objects by their positions, objects that change position are
harder to deal with. You’ll have to reorganize the data structure to keep track of an object at a new
location, and that adds code complexity and spends CPU cycles. Make sure the trade-off is worth it.

Imagine a hash table where the keys of the hashed objects can change spontaneously, and you’ll have a good feel for why it’s tricky.

A spatial partition also uses additional memory for its bookkeeping data structures. Like many
optimizations, it trades memory for speed. If you’re shorter on memory than you are on clock cycles,
that may be a losing proposition.

Sample Code
The nature of patterns is that they vary — each implementation will be a bit different, and spatial
partitions are no exception. Unlike other patterns, though, many of these variations are well-
documented. Academia likes publishing papers that prove performance gains. Since I only care about
the concept behind the pattern, I’m going to show you the simplest spatial partition: a fixed grid.

See the last section of this chapter for a list of some of the most common spatial partitions used in games.

A sheet of graph paper

Imagine the entire field of battle. Now, superimpose a grid of fixed-size squares onto it like a sheet of
graph paper. Instead of storing our units in a single array, we put them in the cells of this grid. Each
cell stores the list of units whose positions are within that cell’s boundary.

When we handle combat, we only consider units within the same cell. Instead of comparing each unit
in the game with every other unit, we’ve partitioned the battlefield into a bunch of smaller mini-
battlefields, each with many fewer units.

A grid of linked units

OK, let’s get coding. First, some prep work. Here’s our basic Unit class:

class Unit
{

 friend class Grid;

public:
 Unit(Grid* grid, double x, double y)
 : grid_(grid),
 x_(x),
 y_(y)
 {}

 void move(double x, double y);

private:
 double x_, y_;
 Grid* grid_;
};

Each unit has a position (in 2D) and a pointer to the Grid that it lives on. We make Grid a friend
class because, as we’ll see, when a unit’s position changes, it has to do an intricate dance with the
grid to make sure everything is updated correctly.

Here’s a sketch of the grid:

class Grid
{
public:
 Grid()
 {
 // Clear the grid.
 for (int x = 0; x < NUM_CELLS; x++)
 {
 for (int y = 0; y < NUM_CELLS; y++)
 {
 cells_[x][y] = NULL;
 }
 }
 }

 static const int NUM_CELLS = 10;
 static const int CELL_SIZE = 20;
private:
 Unit* cells_[NUM_CELLS][NUM_CELLS];
};

Note that each cell is just a pointer to a unit. Next, we’ll extend Unit with next and prev pointers:

class Unit
{
 // Previous code...
private:
 Unit* prev_;
 Unit* next_;
};

This lets us organize units into a doubly linked list instead of an array.

http://en.wikipedia.org/wiki/Doubly_linked_list

Each cell in the grid points to the first unit in the list of units within that cell, and each unit has
pointers to the units before it and after it in the list. We’ll see why soon.

Throughout this book, I’ve avoided using any of the built-in collection types in the C++ standard library. I want to require as little
external knowledge as possible to understand the example, and, like a magician’s “nothing up my sleeve”, I want to make it clear
exactly what’s going on in the code. Details are important, especially with performance-related patterns.

But this is my choice for explaining patterns. If you’re using them in real code, spare yourself the headache and use the fine
collections built into pretty much every programming language today. Life’s too short to code linked lists from scratch.

Entering the field of battle

The first thing we need to do is make sure new units are actually placed into the grid when they are
created. We’ll make Unit handle this in its constructor:

Unit::Unit(Grid* grid, double x, double y)
: grid_(grid),
 x_(x),
 y_(y),
 prev_(NULL),
 next_(NULL)
{
 grid_->add(this);
}

This add() method is defined like so:

void Grid::add(Unit* unit)
{
 // Determine which grid cell it's in.
 int cellX = (int)(unit->x_ / Grid::CELL_SIZE);
 int cellY = (int)(unit->y_ / Grid::CELL_SIZE);

 // Add to the front of list for the cell it's in.
 unit->prev_ = NULL;
 unit->next_ = cells_[cellX][cellY];
 cells_[cellX][cellY] = unit;

 if (unit->next_ != NULL)
 {
 unit->next_->prev_ = unit;
 }
}

Dividing by the cell size converts world coordinates to cell space. Then, casting to an int truncates the fractional part so we get the
cell index.

It’s a little finicky like linked list code always is, but the basic idea is pretty simple. We find the cell

that the unit is sitting in and then add it to the front of that list. If there is already a list of units there,
we link it in after the new unit.

A clash of swords

Once all of the units are nestled in their cells, we can let them start hacking at each other. With this
new grid, the main method for handling combat looks like this:

void Grid::handleMelee()
{
 for (int x = 0; x < NUM_CELLS; x++)
 {
 for (int y = 0; y < NUM_CELLS; y++)
 {
 handleCell(cells_[x][y]);
 }
 }
}

It walks each cell and then calls handleCell() on it. As you can see, we really have partitioned the
battlefield into little isolated skirmishes. Each cell then handles its combat like so:

void Grid::handleCell(Unit* unit)
{
 while (unit != NULL)
 {
 Unit* other = unit->next_;
 while (other != NULL)
 {
 if (unit->x_ == other->x_ &&
 unit->y_ == other->y_)
 {
 handleAttack(unit, other);
 }
 other = other->next_;
 }

 unit = unit->next_;
 }
}

Aside from the pointer shenanigans to deal with walking a linked list, note that this is exactly like our
original naïve method for handling combat. It compares each pair of units to see if they’re in the same
position.

The only difference is that we no longer have to compare all of the units in the battle to each other —
just the ones close enough to be in the same cell. That’s the heart of the optimization.

From a simple analysis, it looks like we’ve actually made the performance worse. We’ve gone from a doubly nested loop over the
units to a triply nested loop over the cells and then the units. The trick here is that the two inner loops are now over a smaller number
of units, which is enough to cancel out the cost of the outer loop over the cells.

However, that does depend a bit on the granularity of our cells. Make them too small and that outer loop can start to matter.

Charging forward

We’ve solved our performance problem, but we’ve created a new problem in its stead. Units are now
stuck in their cells. If we move a unit past the boundary of the cell that contains it, units in the cell
won’t see it anymore, but neither will anyone else. Our battlefield is a little too partitioned.

To fix that, we’ll need to do a little work each time a unit moves. If it crosses a cell’s boundary lines,
we need to remove it from that cell and add it to the new one. First, we’ll give Unit a method for
changing its position:

void Unit::move(double x, double y)
{
 grid_->move(this, x, y);
}

Presumably, this gets called by the AI code for computer-controlled units and by the user input code
for the player’s units. All it does is hand off control to the grid, which then does:

void Grid::move(Unit* unit, double x, double y)
{
 // See which cell it was in.
 int oldCellX = (int)(unit->x_ / Grid::CELL_SIZE);
 int oldCellY = (int)(unit->y_ / Grid::CELL_SIZE);

 // See which cell it's moving to.
 int cellX = (int)(x / Grid::CELL_SIZE);
 int cellY = (int)(y / Grid::CELL_SIZE);

 unit->x_ = x;
 unit->y_ = y;

 // If it didn't change cells, we're done.
 if (oldCellX == cellX && oldCellY == cellY) return;

 // Unlink it from the list of its old cell.
 if (unit->prev_ != NULL)
 {
 unit->prev_->next_ = unit->next_;
 }

 if (unit->next_ != NULL)
 {
 unit->next_->prev_ = unit->prev_;
 }

 // If it's the head of a list, remove it.
 if (cells_[oldCellX][oldCellY] == unit)
 {
 cells_[oldCellX][oldCellY] = unit->next_;
 }

 // Add it back to the grid at its new cell.
 add(unit);
}

That’s a mouthful of code, but it’s pretty straightforward. The first bit checks to see if we’ve crossed
a cell boundary at all. If not, all we need to do is update the unit’s position and we’re done.

If the unit has left its current cell, we remove it from that cell’s linked list and then add it back to the
grid. Like with adding a new unit, that will insert the unit in the linked list for its new cell.

This is why we’re using a doubly linked list — we can very quickly add and remove units from lists

by setting a few pointers. With lots of units moving around each frame, that can be important.

At arm’s length

This seems pretty simple, but I have cheated in one way. In the example I’ve been showing, units only
interact when they have the exact same position. That’s true for checkers and chess, but less true for
more realistic games. Those usually have attack distances to take into account.

This pattern still works fine. Instead of just checking for an exact location match, we’ll do something
more like:

if (distance(unit, other) < ATTACK_DISTANCE)
{
 handleAttack(unit, other);
}

When range gets involved, there’s a corner case we need to consider: units in different cells may still
be close enough to interact.

Here, B is within A’s attack radius even through their centerpoints are in different cells. To handle
this, we will need to compare units not only in the same cell, but in neighboring cells too. To do this,
first we’ll split the inner loop out of handleCell():

void Grid::handleUnit(Unit* unit, Unit* other)
{
 while (other != NULL)
 {
 if (distance(unit, other) < ATTACK_DISTANCE)
 {
 handleAttack(unit, other);
 }

 other = other->next_;
 }
}

Now we have a function that will take a single unit and a list of other units and see if there are any
hits. Then we’ll make handleCell() use that:

void Grid::handleCell(int x, int y)
{
 Unit* unit = cells_[x][y];
 while (unit != NULL)
 {
 // Handle other units in this cell.
 handleUnit(unit, unit->next_);

 unit = unit->next_;
 }
}

Note that we now also pass in the coordinates of the cell, not just its unit list. Right now, this doesn’t
do anything differently from the previous example, but we’ll expand it slightly:

void Grid::handleCell(int x, int y)
{
 Unit* unit = cells_[x][y];
 while (unit != NULL)
 {
 // Handle other units in this cell.
 handleUnit(unit, unit->next_);

 // Also try the neighboring cells.
 if (x > 0 && y > 0) handleUnit(unit, cells_[x - 1][y - 1]);
 if (x > 0) handleUnit(unit, cells_[x - 1][y]);
 if (y > 0) handleUnit(unit, cells_[x][y - 1]);
 if (x > 0 && y < NUM_CELLS - 1)
 {
 handleUnit(unit, cells_[x - 1][y + 1]);
 }

 unit = unit->next_;
 }
}

Those additional handleUnit() calls look for hits between the current unit and units in four of the
eight neighboring cells. If any unit in those neighboring cells is close enough to the edge to be within
the unit’s attack radius, it will find the hit.

The cell with the unit is U, and the neighboring cells it looks at are X.

We only look at half of the neighbors for the same reason that the inner loop starts after the current
unit — to avoid comparing each pair of units twice. Consider what would happen if we did check all
eight neighboring cells.

Let’s say we have two units in adjacent cells close enough to hit each other, like the previous
example. Here’s what would happen if we looked at all eight cells surrounding each unit:

1. When finding hits for A, we would look at its neighbor on the right and find B. So we’d register
an attack between A and B.

2. Then, when finding hits for B, we would look at its neighbor on the left and find A. So we’d
register a second attack between A and B.

Only looking at half of the neighboring cells fixes that. Which half we look at doesn’t matter at all.

There’s another corner case we may need to consider too. Here, we’re assuming the maximum attack
distance is smaller than a cell. If we have small cells and large attack distances, we may need to scan
a bunch of neighboring cells several rows out.

Design Decisions
There’s a relatively short list of well-defined spatial partitioning data structures, and one option
would be to go through them one at a time here. Instead, I tried to organize this by their essential
characteristics. My hope is that once you do learn about quadtrees and binary space partitions (BSPs)
and the like, this will help you understand how and why they work and why you might choose one
over the other.

Is the partition hierarchical or flat?

Our grid example partitioned space into a single flat set of cells. In contrast, hierarchical spatial
partitions divide the space into just a couple of regions. Then, if one of these regions still contains
many objects, it’s subdivided. This process continues recursively until every region has fewer than
some maximum number of objects in it.

They usually split it in two, four, or eight — nice round numbers to a programmer.

If it’s a flat partition:

It’s simpler. Flat data structures are easier to reason about and simpler to implement.

This is a design point I mention in almost every chapter, and for good reason. Whenever you can, take the simpler
option. Much of software engineering is fighting against complexity.

Memory usage is constant. Since adding new objects doesn’t require creating new
partitions, the memory used by the spatial partition can often be fixed ahead of time.

It can be faster to update when objects change their positions. When an object moves, the
data structure needs to be updated to find the object in its new location. With a hierarchical
spatial partition, this can mean adjusting several layers of the hierarchy.

If it’s hierarchical:

It handles empty space more efficiently. Imagine in our earlier example if one whole side
of the battlefield was empty. We’d have a large number of empty cells that we’d still have
to allocate memory for and walk each frame.

Since hierarchical space partitions don’t subdivide sparse regions, a large empty space
will remain a single partition. Instead of lots of little partitions to walk, there is a single big
one.

It handles densely populated areas more efficiently. This is the other side of the coin: if
you have a bunch of objects all clumped together, a non-hierarchical partition can be
ineffective. You’ll end up with one partition that has so many objects in it that you may as
well not be partitioning at all. A hierarchical partition will adaptively subdivide that into

smaller partitions and get you back to having only a few objects to consider at a time.

Does the partitioning depend on the set of objects?

In our sample code, the grid spacing was fixed beforehand, and we slotted units into cells. Other
partitioning schemes are adaptable — they pick partition boundaries based on the actual set of
objects and where they are in the world.

The goal is have a balanced partitioning where each region has roughly the same number of objects in
order to get the best performance. Consider in our grid example if all of the units were clustered in
one corner of the battlefield. They’d all be in the same cell, and our code for finding attacks would
regress right back to the original O(n²) problem that we’re trying to solve.

If the partitioning is object-independent:

Objects can be added incrementally. Adding an object means finding the right partition
and dropping it in, so you can do this one at a time without any performance issues.

Objects can be moved quickly. With fixed partitions, moving a unit means removing it from
one and adding it to another. If the partition boundaries themselves change based on the set
of objects, then moving one can cause a boundary to move, which can in turn cause lots of
other objects to need to be moved to different partitions.

This is directly analogous to sorted binary search trees like red-black trees or AVL trees: when you add a single item,
you may end up needing to re-sort the tree and shuffle a bunch of nodes around.

The partitions can be imbalanced. Of course, the downside of this rigidity is that you have
less control over your partitions being evenly distributed. If objects clump together, you get
worse performance there while wasting memory in the empty areas.

If the partitioning adapts to the set of objects:

Spatial partitions like BSPs and k-d trees split the world recursively so that each half contains
about the same number of objects. To do this, you have to count how many objects are on each
side when selecting the planes you partition along. Bounding volume hierarchies are another
type of spatial partition that optimizes for the specific set of objects in the world.

You can ensure the partitions are balanced. This gives not just good performance, but
consistent performance: if each partition has the same number of objects, you ensure that
all queries in the world will take about the same amount of time. When you need to
maintain a stable frame rate, this consistency may be more important than raw performance.

It’s more efficient to partition an entire set of objects at once. When the set of objects
affects where boundaries are, it’s best to have all of the objects up front before you
partition them. This is why these kinds of partitions are more frequently used for art and
static geometry that stays fixed during the game.

If the partitioning is object-independent, but hierarchy is object-dependent:

One spatial partition deserves special mention because it has some of the best characteristics of
both fixed partitions and adaptable ones: quadtrees.

A quadtree partitions 2D space. Its 3D analogue is the octree, which takes a volume and partitions it into eight cubes. Aside
from the extra dimension, it works the same as its flatter sibling.

A quadtree starts with the entire space as a single partition. If the number of objects in the space
exceeds some threshold, it is sliced into four smaller squares. The boundaries of these squares
are fixed: they always slice space right in half.

Then, for each of the four squares, we do the same process again, recursively, until every square
has a small number of objects in it. Since we only recursively subdivide squares that have a high
population, this partitioning adapts to the set of objects, but the partitions don’t move.

You can see the partitioning in action reading from left to right here:

Objects can be added incrementally. Adding a new object means finding the right square
and adding it. If that bumps that square above the maximum count, it gets subdivided. The
other objects in that square get pushed down into the new smaller squares. This requires a
little work, but it’s a fixed amount of effort: the number of objects you have to move will
always be less than the maximum object count. Adding a single object can never trigger
more than one subdivision.

Removing objects is equally simple. You remove the object from its square and if the
parent square’s total count is now below the threshold, you can collapse those
subdivisions.

Objects can be moved quickly. This, of course, follows from the above. “Moving” an
object is just an add and a remove, and both of those are pretty quick with quadtrees.

The partitions are balanced. Since any given square will have less than some fixed

maximum number of objects, even when objects are clustered together, you don’t have
single partitions with a huge pile of objects in them.

Are objects only stored in the partition?

You can treat your spatial partition as the place where the objects in your game live, or you can
consider it just a secondary cache to make look-up faster while also having another collection that
directly holds the list of objects.

If it is the only place objects are stored:

It avoids the memory overhead and complexity of two collections. Of course, it’s always
cheaper to store something once instead of twice. Also, if you have two collections, you
have to make sure to keep them in sync. Every time an object is created or destroyed, it has
to be added or removed from both.

If there is another collection for the objects:

Traversing all objects is faster. If the objects in question are “live” and have some
processing they need to do, you may find yourself frequently needing to visit every object
regardless of its location. Imagine if, in our earlier example, most of the cells were empty.
Having to walk the full grid of cells to find the non-empty ones can be a waste of time.

A second collection that just stores the objects gives you a way to walk all them directly.
You have two data structures, one optimized for each use case.

See Also
I’ve tried not to discuss specific spatial partitioning structures in detail here to keep the chapter
high-level (and not too long!), but your next step from here should be to learn a few of the
common structures. Despite their scary names, they are all surprisingly straightforward. The
common ones are:

Grid
Quadtree
BSP
k-d tree
Bounding volume hierarchy

Each of these spatial data structures basically extends an existing well-known data structure
from 1D into more dimensions. Knowing their linear cousins will help you tell if they are a good
fit for your problem:

A grid is a persistent bucket sort.
BSPs, k-d trees, and bounding volume hierarchies are binary search trees.
Quadtrees and octrees are tries.

http://en.wikipedia.org/wiki/Grid_(spatial_index)
http://en.wikipedia.org/wiki/Quad_tree
http://en.wikipedia.org/wiki/Binary_space_partitioning
http://en.wikipedia.org/wiki/Kd-tree
http://en.wikipedia.org/wiki/Bounding_volume_hierarchy
http://en.wikipedia.org/wiki/Bucket_sort
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Trie

	Copyright
	Acknowledgements
	Dedication
	Contents
	Introduction
	Architecture, Performance, and Games

	Design Patterns Revisited
	Command
	Flyweight
	Observer
	Prototype
	Singleton
	State

	Sequencing Patterns
	Double Buffer
	Game Loop
	Update Method

	Behavioral Patterns
	Bytecode
	Subclass Sandbox
	Type Object

	Decoupling Patterns
	Component
	Event Queue
	Service Locator

	Optimization Patterns
	Data Locality
	Dirty Flag
	Object Pool
	Spatial Partition

