
www.it-ebooks.info

http://www.it-ebooks.info/


Building Web Applications  
with Python and Neo4j

Develop exciting real-world Python-based  
web applications with Neo4j using frameworks  
such as Flask, Py2neo, and Django

Sumit Gupta

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/


Building Web Applications with Python and Neo4j

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1100715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-398-8

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/


Credits

Author
Sumit Gupta

Reviewers
Adarsh Deshratnam

Gianluca Tiepolo

Tsanyo Tsanev

Manuel Vives

Commissioning Editor
Kunal Parikh

Acquisition Editor
Larissa Pinto

Content Development Editor
Anish Sukumaran

Technical Editors
Novina Kewalramani

Ryan Kochery

Manal Pednekar

Copy Editors
Vikrant Phadke

Alpha Singh

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/


About the Author

Sumit Gupta is a seasoned professional, innovator, and technology evangelist, 
with over 100 months of experience in architecting, managing, and delivering 
enterprise solutions that revolve around a variety of business domains, such as 
hospitality, healthcare, risk management, insurance, and so on. He is passionate 
about technology, with over 14 years of hands-on experience in the software 
industry. Sumit has been using big data and cloud technologies for the past  
4 to 5 years to solve complex business problems.

He is also the author of Neo4j Essentials (http://neo4j.com/books/neo4j-
essentials/).

I want to acknowledge and express my gratitude to everyone 
who supported me in authoring this book. I am thankful for their 
inspiring guidance and valuable, constructive, and friendly advice.

www.it-ebooks.info

http://neo4j.com/books/neo4j-essentials/
http://neo4j.com/books/neo4j-essentials/
http://www.it-ebooks.info/


About the Reviewers

Adarsh Deshratnam is a senior consultant (big data and cloud) whose focus is 
on designing, developing, and deploying Hadoop solutions for many MNCs. In 
this position, he has worked with customers to build several Hadoop applications 
with multiple database technologies, providing a unique perspective on moving 
customers beyond batch processing. An avid technologist, he focuses on technological 
innovations. Since 2006, he has been working full time and part time with big data and 
multiple database technologies. Adarsh completed his engineering at Staffordshire 
University with a computing major.

I would like to thank Packt Publishing for giving me the wonderful 
opportunity to review a book on one of the quickly evolving graph 
databases (Neo4j).

Gianluca Tiepolo has been programming since Windows 3.11 was around. 
As a cofounder of Sixth Sense Solutions, a start-up that is a global leader in retail 
solutions, he has worked with some of the world's biggest brands to deliver engaging, 
interactive experiences to their customers. He specializes in high-performance 
implementations of database services and computer vision. Currently, he's deeply 
involved in the open source community and has a lot of interest in big data.

I want to thank my wonderful wife, Adele; my awesome teammates; 
and my friend Marco for their support and inspiration.

www.it-ebooks.info

http://www.it-ebooks.info/


Tsanyo Tsanev is a senior web developer at Dressler LLC in New York, USA. 
From the whiteboard to production, he has experience in building a variety of web 
applications. He began experimenting with Neo4j for the social networking website 
SongSilo and has since found many other uses for it. Tsanyo's passion is coding;  
he does it both for a living and as a hobby.

Manuel Vives is a software engineer, who focuses on Python and C++.  
He specializes in backend parts of distributed software and NoSQL databases.  
He used to work in France for a company that specializes in cybersecurity and 
training, and he now works in Canada.

www.it-ebooks.info

http://www.it-ebooks.info/


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


[ i ]

Table of Contents
Preface v
Chapter 1: Your First Query with Neo4j 1

Thinking in graphs for SQL developers 2
Comparing SQL and Cypher 3
Evolving graph structures from SQL models 5

Licensing and configuring – Neo4j 8
Licensing – Community Edition 8
Licensing – Enterprise Edition 8
Installing Neo4J Community Edition on Linux/Unix 9

Installing as a Linux tar / standalone application 10
Installing as a Linux service 11

Installing Neo4j Enterprise Edition on Unix/Linux 12
Using the Neo4j shell 14
Introducing the Neo4j REST interface 16

Authorization and authentication 16
CRUD operations 17

Running queries from the Neo4j browser 20
Summary 21

Chapter 2: Querying the Graph with Cypher 23
Basic anatomy of a Cypher query 24

Brief details of Cypher 24
Cypher execution phases 25

Parsing, validating, and generating the execution plan 25
Locating the initial node(s) 26
Selecting and traversing the relationships 26
Changing and/or returning the values 26

The structure of Cypher 26
The read operations 27

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ ii ]

The create or update operations 30
The delete operation 32

Pattern and pattern matching 32
Sample dataset 32
Pattern for nodes 34
Pattern for labels 34
Pattern for relationships 34
Pattern for properties 35
Using the where clause with patterns 35

Using patterns in the where clause 36
Using general clauses with patterns 36

The order by clause 37
The limit and skip clauses 37
The WITH clause 37
The UNION and UNION ALL clauses 38

Working with nodes and relationships 39
Summary 43

Chapter 3: Mutating Graph with Cypher 45
Creating nodes and relationships 46

Working with nodes 46
Single node 46
Multiple nodes 48
Node with labels 48
Node with properties 49

Working with relationships 51
Single relationships 51
Multiple relationships 52
Relationships with properties 54

Nodes and relationships with full paths 55
Creating unique nodes and relationships 55
CREATE UNIQUE and MERGE 55
Working with constraints 56

Transforming nodes and relationships 57
Updating node properties 57
Updating a label 58
Updating relationships 58

Cypher query optimizations 58
Indexes 59

Index sampling 61
Understanding execution plans 62
Analyzing and optimizing queries 64

Summary 66

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ iii ]

Chapter 4: Getting Python and Neo4j to Talk Py2neo 67
Installing and configuring py2neo 68

Prerequisites 68
Installing py2neo 69

Exploring the py2neo APIs 70
Graph 70
Authentication 71
Node 72
Relationship 75
Cypher 77
Transactions 80
Paths 81

Creating a social network with py2neo 83
Batch imports 86
Unit testing 88
Summary 91

Chapter 5: Build RESTful Service with Flask and Py2neo 93
Introducing (and installing) Flask 94
Setting up web applications with Flask and Flask-RESTful 96

Your first Flask application 96
Displaying static content 98
Displaying dynamic content 99

Your first Flask RESTful API 101
JSON processing 102

REST APIs for social network data using py2neo 104
ORM for graph databases py2neo – OGM 104
Social network application with Flask-RESTful and OGM 106

Creating object model 106
Creating REST APIs over data models 110

Summary 114
Chapter 6: Using Neo4j with Django and Neomodel 115

Installing and configuring Neomodel 116
Declaring models and properties 118

Defining nodes 118
Defining properties 119
Persisting and querying a social data model 121

Adding relationships to models 125
Running Cypher queries 129
Using Neomodel in a Django app 130

Signals in Neomodel 131
Summary 132

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ iv ]

Chapter 7: Deploying Neo4j in Production 133
Neo4j logical architecture 134

Disk/filesystem 135
Record files 135
Transaction logs 137
Caches 137
Core Java API 139
Traversal framework 140
REST API 141

Neo4j physical architecture 142
High availability 142
Fault tolerance 144
Data replication and data locality 145
Advanced settings 146

Monitoring the health of the Neo4J nodes 147
Neo4j browser 148
Webadmin 148
JMX beans 149

Backup and recovery 152
Summary 153

Index 155

www.it-ebooks.info

http://www.it-ebooks.info/


[ v ]

Preface
Relational databases have been one of the most widely used and most common 
forms of software systems for the storage of data since the 1970s. They are highly 
structured and store data in the form of tables, that is, with rows and columns. 
Structuring and storing data in the form of rows and columns has its own 
advantages; for example, it is easier to understand and locate data, reduce data 
redundancy by applying normalization, maintain data integrity, and much more.

But is this the best way to store any kind of data?

Let's consider an example of social networking:

Mike, John, and Claudia are friends. Claudia is married to Wilson. Mike and Wilson 
work for the same company.

Here is one of the possible ways to structure this data in a relational database:

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ vi ]

Complex, isn't it? And it can be more complex!

We should remember that relationships are evolving, and will evolve over a period 
of time. There could be new relationships, or there could be changes to existing 
relationships.

We can design a better structure but in any case, wouldn't that be forcibly fitting the 
model into a structure? 

RDBMS is good for use cases where the relationship between entities is more or less 
static and does not change over a period of time. Moreover, the focus of RDBMS is 
more on the entities and less on the relationships between them.

There could be many more examples where RDBMS may not be the right choice:

1. Model and store 7 billion people objects and 3 billion non-people objects to 
provide an "earth view" drill-down from the planet to a sidewalk

2. Network management
3. Genealogy
4. Public transport links and road maps

Consider another way of modelling the same data:

Simple, isn't it?

Welcome to the world of Neo4j—a graph database.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ vii ]

Although there is no single definition of graphs, here is the simplest one (http://
en.wikipedia.org/wiki/Graph_(abstract_data_type)), which helps us to 
understand the theory of graphs:

A graph data structure consists of a finite (and possibly mutable) set of nodes or 
vertices, together with a set of ordered pairs of these nodes (or, in some cases, a set 
of unordered pairs). These pairs are known as edges or arcs. As in mathematics, 
an edge (x,y) is said to point or go from x to y. The nodes may be part of the graph 
structure, or may be external entities represented by integer indices or references.

Neo4j, as an open source graph database, is part of the NoSQL family, and provides 
a flexible data structure, where the focus is on the relationships between the entities 
rather than the entities themselves.

Its first version (1.0) was released in February 2010, and since then, it has never 
stopped. It is amazing to see the pace at which Neo4J has evolved over the years. At 
the time of writing this book, the stable version was 2.2.RC01, which was released in 
March 2015.

If you are reading this book, then you probably already have sufficient knowledge 
about graph databases and Python. You will appreciate their contribution to the 
complex world of relationships.

Let's move forward and jump into the nitty-gritty of developing web applications 
with Python and Neo4j.

In the subsequent chapters, we will cover the various aspects dealing with data 
modelling, programming, and data analysis by means of application development 
with Python and Neo4j. We will cover the concepts of working with py2neo, Django, 
flask, and many more.

What this book covers
Chapter 1, Your First Query with Neo4j, details the process of the installation of Neo4j 
and Python on Windows and Linux. This chapter briefly explains the function 
of every tool installed together with Neo4j (shell, server, and browser). More 
importantly, it introduces, and helps you get familiar with, the Neo4j browser. You 
get to run the first basic Cypher query by using different methods exposed by Neo4j 
(shell, Java, the browser, and REST).

www.it-ebooks.info

http://en.wikipedia.org/wiki/Graph_(abstract_data_type)
http://en.wikipedia.org/wiki/Graph_(abstract_data_type)
http://www.it-ebooks.info/


Preface

[ viii ]

Chapter 2, Querying the Graph with Cypher, starts by explaining Cypher as a graph 
query language for Neo4j, and then we take a deep dive into the various Cypher 
constructs to perform read operations. This chapter also talks about the importance 
of patterns and pattern matching, and their usage in Cypher with various real-world 
and easy-to-understand examples.

Chapter 3, Mutating Graph with Cypher, starts by covering the Cypher constructs  
used to perform write operations on the Neo4j database. This chapter further talks 
about creating relationships between nodes and discusses the constraints required 
for maintaining the integrity of data. At the end, it discuss about the performance 
tuning of Cypher queries using various optimization techniques.

Chapter 4, Getting Python and Neo4j to Talk Py2neo, introduces Py2neo as a Python 
framework for working with Neo4j. This chapter explores various Python APIs 
exposed by Py2neo for working with Neo4j. It also talks about batch imports  
and introduces a social network use case, which is created and unit tested by  
using Py2neo APIs.

Chapter 5, Build RESTful Service with Flask and Py2neo, talks about building web 
applications and the integration of Flask and Py2neo. This chapter starts with the 
basics of Flask as a framework for exposing ReSTful APIs, and further talks about 
the Py2neo extension OGM (short for Object Graph Mapper) and its integration with 
Flask for performing various CRUD and search operations on the social network use 
case by creating and leveraging various ReST endpoints.

Chapter 6, Using Neo4j with Django and Neomodel, starts by describing Neomodel as 
an ORM for Neo4j. It discusses various high-level APIs exposed by Neomodel to 
perform CRUD and search operations using Python APIs or by directly executing 
Cypher queries. Finally, it talks about integration of two of the popular Python 
frameworks, Django and Neomodel.

Chapter 7, Deploying Neo4j in Production, explains the logical architecture of Neo4j,  
its various components, or APIs, such as filesystems, data organization and so  
on. Then we move on to the physical architecture of Neo4j, where we talk about  
meeting various NFRs imposed by typical enterprise deployments, such as HA,  
fault tolerance, data locality, backup, and recovery. Further, this chapter talks  
about various advanced Neo4j configurations and also discusses the various  
ways to monitor our Neo4j deployments.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ ix ]

What you need for this book
Readers should have programming experience in Python and some basic knowledge 
or understanding of any graph or NoSQL databases.

Who this book is for
This book is aimed at competent developers who have a good knowledge and 
understanding of Python that can allow efficient programming of the core elements 
and applications.

If you are reading this book, then you probably already have sufficient knowledge 
of Python. This book will cover data modelling, programming, and data analysis by 
means of application development with Python and Neo4j. It will cover concepts 
such as working with py2neo, Django, flask, and so on.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

MATCH (x { name: "Bradley" })--(y)-->()
WITH x
CREATE (n:Male {name:"Smith", Age:"24"})-[r:FRIEND]->(x)
returnn,r,x;

Any command-line input or output is written as follows:

pip install flask Flask-RESTful

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "Now, 
click on the star sign in the panel on the extreme left-hand side, and click on  
Create a node in the provided menu."

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ x ]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it  
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/


Preface

[ xi ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 1 ]

Your First Query with Neo4j
Neo4j is a graph database and has been in commercial development for over a 
decade. It comes with several flavors, supporting a wide variety of use cases and 
requirements imposed by start-ups, large enterprises, and Fortune 500 customers. 
It is a fully transactional database; it supports Atomicity, Consistency, Isolation, 
Durability (ACID) and is also well equipped to handle the complexities introduced 
by various kinds of systems—web-based, online transaction processing (OLTP),  
data-warehousing, analytics, and so on.

This chapter will help you to understand the paradigm, applicability, various 
aspects, and characteristics of Neo4j as a graph database. It will guide you through 
the installation process, starting right from downloading and running your first 
Cypher query leveraging various interfaces/tools/utilities exposed by Neo4j  
against your fully-working instance.

At the end of this chapter, your work environment will be fully functional, and  
you will be able to write your first Cypher query to insert/fetch the data from the 
Neo4j database.

This chapter will cover the following points:

• Thinking in graphs for SQL developers
• Licensing and configuring – Neo4j
• Using the Neo4j shell
• Introducing the Neo4j REST interface
• Running queries from the Neo4j browser

www.it-ebooks.info

http://www.it-ebooks.info/


Your First Query with Neo4j

[ 2 ]

Thinking in graphs for SQL developers
Some might say that it is difficult for SQL developers to understand the paradigm of 
graphs, but it is not entirely true. The underlying essence of data modeling does not 
change. The focus is still on the entities and the relationship between these entities. 
Having said that, let's discuss the pros/cons, applicability, and similarity of the 
relational models and graph models.

The relational models are schema-oriented. If you know the structure of data 
in advance, it is easy to ensure that data conforms to it, and at the same time, it 
helps in enforcing stronger integrity. Some examples include traditional business 
applications, such as flight reservations, payroll, order processing, and many more.

The graph models are occurrence-oriented—Probabilistic model. They are adaptive 
and define a generic data structure that is evolving and works well with scenarios 
where the schema is not known in advance. The graph model is perfectly suited to 
store, manage, and extract highly-connected data.

Let's briefly discuss the disadvantages of the SQL databases, which led to the 
evolution of the graph databases:

• It is difficult to develop efficient models for evolving data, such as social 
networks

• The focus is more on the structure of data than the relationships
• They lack an efficient mechanism for performing recursions

All the preceding reasons were sufficient to design a different data structure, and as 
a result, the graph data structures were introduced.

The objective of the graph databases was specifically to meet the disadvantages 
of the SQL databases. However, Neo4j as a graph database, also leveraged the 
advantages of the SQL databases wherever possible and applicable. Let's see a  
few of the similarities between the SQL and graph databases:

• Highly Consistent: At any point in time, all nodes contain the same data at 
the same time

• Transactional: All insert or update operations are within a transaction where 
they are ACID

Having said that, it is not wrong to say that the graph databases are more or less the 
next generation of relational databases.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 3 ]

Comparing SQL and Cypher
Every database has its own query languages; for example, RDBMS leverages SQL 
and conforms to SQL-92 (http://en.wikipedia.org/wiki/SQL-92). Similarly, 
Neo4j also has its own query language—Cypher. The syntax of Cypher has 
similarities with SQL, though it still has its own unique characteristics, which  
we will discuss in the upcoming sections.

Neo4j leveraged the concept of patterns and pattern matching, and introduced a new 
declarative graph query language, Cypher, for the Neo4j graph database. Patterns 
and pattern matching are the essence and core of Neo4j, so let's take a moment to 
understand them. We will then talk about the similarities between SQL and Cypher.

Patterns are a given sequence or occurrence of tokens in a particular format. The act 
of matching patterns within a given sequence of characters or any other compatible 
input form is known as pattern matching. Pattern matching should not be confused 
with pattern recognition, which usually produces the exact match and does not have 
any concept of partial matches.

Pattern matching is the heart of Cypher and a very important component of the 
graph databases. It helps in searching and identifying a single or a group of nodes 
by walking along the graph. Refer to http://en.wikipedia.org/wiki/Pattern_
matching for more information on the importance of pattern matching in graphs. 
Let's move forward and talk about Cypher, and it's similarities with SQL.

Cypher is specifically designed to be a human query language, which is focused 
on making things simpler for developers. Cypher is a declarative language and 
implements "What to retrieve" and not "how to retrieve", which is in contrast to  
the other imperative languages, such as Java and Gremlin (refer to http://gremlin.
tinkerpop.com/).

Cypher borrows much of its structure from SQL, which makes it easy to use/
understand for SQL developers. "SQL familiarity" is another objective of Cypher.

www.it-ebooks.info

http://en.wikipedia.org/wiki/SQL-92
http://en.wikipedia.org/wiki/Pattern_matching
http://en.wikipedia.org/wiki/Pattern_matching
http://gremlin.tinkerpop.com/
http://gremlin.tinkerpop.com/
http://www.it-ebooks.info/


Your First Query with Neo4j

[ 4 ]

Let's refer to the following illustration, which defines the Cypher constructs and the 
similarity of Cypher with SQL constructs:

The preceding diagram defines the mapping of the common SQL and Cypher 
constructs. It also depicts the examples stating the usage of these constructs.

For instance, FROM is similar to MATCH or START and produces the same results. 
Although the way they are used is different but the objective and concept remains  
the same.

We will talk about Cypher in detail in Chapter 2, Querying the Graph with Cypher and 
Chapter 3, Mutating Graph with Cypher, but without getting into the nitty-gritty and 
syntactical details. The following is one more illustration that briefly describes the 
similarities between the Cypher and SQL constructs:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 5 ]

In the preceding illustration, we are retrieving the data using Cypher pattern 
matching. In the statement shown in the preceding diagram, we are retrieving all 
the nodes that are labeled with FEMALE in our Neo4j database. This statement is very 
similar to the SQL statement where we want to retrieve some specific rows of a table 
based on a given criteria, such as the following query:

SELECT * from EMPLOYEE where GENDER = 'FEMALE'

The preceding examples should be sufficient to understand that SQL developers can 
learn Cypher in no time.

Let's take one more example where we want to retrieve the total number of 
employees in the company X:

• SQL syntax: Select count (EMP-ID) from Employee where COMPANY_
NAME='X'

• Cypher syntax: match (n) where n.CompanyName='X' return count(n);

The preceding Cypher query shows the usage of aggregations such as count, which 
can also be replaced by sum, avg, min, max, and so on.

Refer to http://neo4j.com/docs/stable/query-aggregation.
html for further information on aggregations in Cypher.

Let's move forward and discuss the transformation of the SQL data structures into 
the graph data structures.

Evolving graph structures from SQL models
The relational models are the simplest models to depict and define the entities and 
the relationship between those entities. It is easy to understand and you can quickly 
whiteboard with your colleagues and domain experts.

A graph model is similar to a relational model as both models are focused on the 
domain and use case. However, there is a substantial difference in the way they are 
created and defined. We will discuss the way the graph models are derived from  
the relational models, but before that, let's look at the important components of the 
graph models:

• Nodes: This component represents entities such as people, businesses, 
accounts, or any other item you might want to keep track of.

www.it-ebooks.info

http://neo4j.com/docs/stable/query-aggregation.html
http://neo4j.com/docs/stable/query-aggregation.html
http://www.it-ebooks.info/


Your First Query with Neo4j

[ 6 ]

• Labels: This component is the tag that defines the category of nodes. There 
can be one or more labels on a node. A label also helps in creating indexes, 
which further help in faster retrievals. We will discuss this in Chapter 3, 
Mutating Graph with Cypher.

• Relationship: This component is the line that defines the connection between 
the two nodes. Relationship can further have its own properties and direction.

• Properties: This component is pertinent information that relates to the nodes. 
This can be applied to a node or the relationship.

Let's take an example of a relational model, which is about an organization, and then 
understand the process of converting this into a graph model:

In the preceding relational model, we have employee, department, and title as 
entities, and Emp-Dept and Emp-Title as the relationship tables.

Here is sample data within this model:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 7 ]

The preceding screenshot depicts the sample data within the relational structures. 
The following are the guidelines to convert the preceding relational model into the 
graph model:

• The entity table is represented by a label on nodes
• Each row in an entity table is a node
• The columns on these tables become the node properties
• The foreign keys and the join tables are transformed into relationships; 

columns on these tables become the relationship properties

Now, let's follow the preceding guidelines and convert our relational model into the 
graph model, which will look something like the below image:

The preceding illustration defines the complete process and the organization of 
data residing in the relational models into the graph models. We can use the same 
guidelines for transforming a variety of relational models into the graph structures.

In this section, we discussed the similarities between SQL and Cypher. We also 
talked and discussed about the rules and processes of transforming the relational 
models into graph models. Let's move forward and understand the licensing and 
installation procedure of Neo4j.

www.it-ebooks.info

http://www.it-ebooks.info/


Your First Query with Neo4j

[ 8 ]

Licensing and configuring – Neo4j
Neo4j is an open source graph database, which means all its sources are available to 
the public (currently on GitHub at https://github.com/neo4j/neo4j). However, 
Neo Technology, the company behind Neo4j, distributes the latter in two different 
editions—the Community edition and Enterprise edition. Let's briefly discuss the 
licensing policy for the Community and Enterprise editions, and then we will talk 
about the installation procedures on the Unix/Linux operating systems.

Licensing – Community Edition
Community Edition is a single node installation licensed under General Public 
License (GPL) Version 3 (http://en.wikipedia.org/wiki/GNU_General_Public_
License) and is used for the following purposes:

• Preproduction environments, such as development or QA for fast paced 
developments

• Small to medium scale applications where it is preferred to embed the 
database within the existing application

• Research and development where advanced monitoring and high 
performance is not the focus

You can benefit from the support of the whole Neo4j community on Stack Overflow, 
Google Groups, and Twitter.

If you plan to ask a question on Stack Overflow, do not 
forget to tag your question with the #Neo4j hashtag.

Licensing – Enterprise Edition
Enterprise Edition comes with three different kinds of subscription options and 
provides the distributed deployment of the Neo4j databases, along with various 
other features, such as backup, recovery, replication, and so on.

• Personal license: It is free of charge and may look very similar to 
Community Edition. It targets students, as well as small businesses.

www.it-ebooks.info

https://github.com/neo4j/neo4j
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://www.it-ebooks.info/


Chapter 1

[ 9 ]

• Startup program: Starting from this plan, you can benefit from the enterprise 
support. A startup license allows workday support hours—10 hours per 5 
business days.

• Enterprise subscriptions: With this plan, you can benefit from 24/7 support 
and emergency custom patches if needed. At this scale, your company  
will have to directly contact Neo Technology to assess the cost of your 
required setup.

The license defines instance as the Java Virtual 
Machine hosting a Neo4j server.

Each of the subscription is subject to its own license and pricing. Visit http://
neo4j.com/subscriptions/ for more information about available subscriptions 
with Enterprise Edition.

Installing Neo4J Community Edition on  
Linux/Unix
In this section, we will talk about the Neo4j installation on the Linux/Unix operating 
system. At the end of this section, you will have a fully-functional Neo4j instance 
running on your Linux/Unix desktop/server.

Let's perform the following common steps involved in the Neo4j installation on 
Linux/Unix:

1. Download and install Oracle Java 7 (http://www.oracle.com/
technetwork/java/javase/install-linux-self-extracting-138783.
html) or open JDK 7 (https://jdk7.java.net/download.html).

2. Set JAVA_HOME as an environment variable and the value of this variable will 
be the file system path of your JDK installation directory:
export JAVA_HOME=<Path of Java install Dir>

www.it-ebooks.info

http://neo4j.com/subscriptions/
http://neo4j.com/subscriptions/
http://www.oracle.com/technetwork/java/javase/install-linux-self-extracting-138783.html
http://www.oracle.com/technetwork/java/javase/install-linux-self-extracting-138783.html
http://www.oracle.com/technetwork/java/javase/install-linux-self-extracting-138783.html
https://jdk7.java.net/download.html
http://www.it-ebooks.info/


Your First Query with Neo4j

[ 10 ]

3. Download the stable release of the Linux distribution, neo4j-community-
2.2.0-RC01-unix.tar.gz, from http://neo4j.com/download/other-
releases/.

Neo4j can be installed and executed as a Linux service, or it can also be downloaded 
as the .tar file, where, after installation, it needs to be started manually.

Let's talk about the steps involved in installing Neo4j as a service, and then we will 
also talk about the standalone archive.

Installing as a Linux tar / standalone application
Architects have always preferred to install critical applications as a Linux service, 
but there can be reasons, such as insufficient privileges, which restrict you from 
installing software as a Linux service. So, whenever you cannot install software as 
a Linux service, there is another way in which you can download Neo4j, perform 
manual configuration, and start using it.

Let's perform the following steps to install Neo4j as a Linux tar / standalone 
application:

1. Once you have downloaded the Neo4j archive, browse the directory from 
where you want to extract the Neo4j server and untar the Linux/Unix 
archive: tar –xf <location of Archive file>. Let's refer to the  
top-level extracted directory as $NEO4J_HOME.

2. Open the Linux shell or console and execute the following commands for 
starting the sever:

 ° <$NEO4J_HOME>/bin/neo4j - start: This command is used for 
running the server in a new process

www.it-ebooks.info

http://neo4j.com/download/other-releases/
http://neo4j.com/download/other-releases/
http://www.it-ebooks.info/


Chapter 1

[ 11 ]

 ° <$NEO4J_HOME>/bin/neo4j - console: This command is used for 
running the server in the same process or window without forking a 
new process

 ° <$NEO4J_HOME>/bin/neo4j - restart: This command is used for 
restarting the server

3. Browse http://localhost:7474/browser/ and you will see the login 
screen of the Neo4j browser.

4. Enter the default username/password as neo4j/neo4j and press Enter. The 
next screen will ask you to change the default password.

5. Change the password and make sure that you remember it. We will use this 
new password in the upcoming examples.

6. Stop the server by pressing Ctrl + C or by typing <$NEO4J_HOME>/bin/neo4j 
- stop.

Installing as a Linux service
This is the most preferred procedure for installing Neo4j in all kinds of 
environments, whether it's production, development, or QA. Installing Neo4j as a 
Linux service helps a Neo4j server and database to be available for use at server  
start-up and also survive user logons/logoffs. It also provides various other benefits 
such as ease of installation, configuration, and up-gradation.

Let's perform the following steps and install Neo4j as a Linux service:

1. Once the Neo4j archive is downloaded, browse the directory from where  
you want to extract the Neo4j server and untar the Linux/Unix archive:  
tar –xf <location of Archive file>. Let's refer to the top-level 
extracted directory as $NEO4J_HOME.

2. Change the directory to $NEO4J_HOME; and execute the command, sudo bin/
neo4j neo4j-installer install; and follow the steps as they appear on 
the screen.

The installation procedure will provide an option to 
select the user that will be used to run the Neo4j server. 
You can supply any existing or new Linux user (defaults 
to Neo4j). If a user is not present, it will be created as a 
system account and the ownership of <$NEO4J_HOME>/
data will be moved to that user.

www.it-ebooks.info

http://www.it-ebooks.info/


Your First Query with Neo4j

[ 12 ]

3. Once the installation is successfully completed, execute sudo service 
neo4j-service start on the Linux console for starting the server and  
sudo service neo4j-service stop for gracefully stopping the server.

4. Browse http://localhost:7474/browser/ and you will see the login 
screen of the Neo4j browser.

5. Enter the default username/password as neo4j/neo4j and press Enter. The 
next screen will ask you to change the default password.

6. Change the password and make sure that you remember it. We will use this 
new password in the upcoming examples.

To access the Neo4j browser on remote machines, enable 
and modify org.neo4j.server.webserver.address 
in neo4j-server.properties and restart the server.

Installing Neo4j Enterprise Edition on  
Unix/Linux
High availability, fault tolerance, replication, backup, and recovery are a few of the 
notable features provided by Neo4j Enterprise Edition. Setting up a cluster of Neo4j 
nodes is quite similar to the single node setup, except for a few properties which 
need to be modified for the identification of node in a cluster.

Let's perform the following steps for installing Neo4j Enterprise Edition on Linux:

1. Download and install Oracle Java 7 (http://www.oracle.com/
technetwork/java/javase/install-linux-self-extracting-138783.
html) or open JDK 7 (https://jdk7.java.net/download.html).

2. Set JAVA_HOME as the environment variable and the value of this variable will 
be the file system path of your JDK installation directory:
export JAVA_HOME=<Path of Java install Dir>

3. Download the stable release of the Linux distribution, neo4j-community-
2.2.0-RC01-unix.tar.gz from http://neo4j.com/download/other-
releases/.

4. Once downloaded, extract the archive into any of the selected folders and 
let's refer to the top-level extracted directory as $NEO4J_HOME.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/install-linux-self-extracting-138783.html
http://www.oracle.com/technetwork/java/javase/install-linux-self-extracting-138783.html
http://www.oracle.com/technetwork/java/javase/install-linux-self-extracting-138783.html
https://jdk7.java.net/download.html
http://neo4j.com/download/other-releases/
http://neo4j.com/download/other-releases/
http://www.it-ebooks.info/


Chapter 1

[ 13 ]

5. Open <$NEO4J_HOME>\conf\neo4j-server.properties and enable/modify 
the following properties:

 ° org.neo4j.server.database.mode=HA: Keep this value as HA, 
which means high availability. You can run it as a standalone  
too by providing the value as SINGLE.

 ° org.neo4j.server.webserver.address=0.0.0.0: This property 
enables and provides the IP of the node for enabling remote access.

6. Open <$NEO4J_HOME>\conf\neo4j.properties and enable/modify the 
following properties:

 ° ha.server_id=: This property is the unique ID of each node that will 
participate in the cluster. It should be an integer (1, 2, or 3).

 ° ha.cluster_server=192.168.0.1:5001: This property is the IP 
address and port for communicating the cluster status information 
with other instances.

 ° ha.server=192.168.0.1:6001: This property is the IP address  
and port for the node for communicating the transactional data  
with other instances.

 ° ha.initial_hosts=192.168.0.1:5001,192.168.0.2:5001: This 
property is a comma-separated list of host:port (ha.cluster_
server) where all nodes will be listening. This will be the same  
for all the nodes participating in the same cluster.

 ° remote_shell_enabled=true: Enable this property for connecting 
the server remotely through the shell.

 ° remote_shell_host=127.0.0.1: This property enables and provides 
an IP address where remote shell will be listening.

 ° remote_shell_port=1337: This property enables and provides the 
port at which shell will listen. You can keep it as default in case the 
default port is not being used by any other process.

7. Open <$NEO4J_HOME>/bin, execute ./neo4j start and you are done. Stop 
the server by pressing Ctrl + C or by typing ./neo4j stop.

8. Browse http://<IP>:7474/browser/ for interactive shell, and on the  
login screen, enter the default username/password as neo4j/neo4j and 
press Enter.

9. The next screen will ask you to change the default password. Change 
the password and make sure that you remember it. We will use this new 
password in the upcoming examples.

www.it-ebooks.info

http://www.it-ebooks.info/


Your First Query with Neo4j

[ 14 ]

Using the Neo4j shell
The Neo4j shell is a powerful interactive shell for interacting with the Neo4j 
database. It is used for performing the CRUD operations on graphs.

The Neo4j shell can be executed locally (on the same machine on which we have 
installed the Neo4j server) or remotely (by connecting the Neo4j shell to a remote sever).

By default, the Neo4j shell (<$NEO4J_HOME>/bin/neo4j-shell) can be executed 
on the same machine on which the Neo4j server is installed, but the following 
configuration changes are required in <$NEO4J_HOME>/conf/neo4j.properties  
to enable the connectivity of the Neo4j database from the remote machines:

• remote_shell_enabled=true: This configuration enables the property
• remote_shell_host=127.0.0.1: This configuration enables and provides 

the IP address of the machine on which the Neo4j server is installed
• remote_shell_port=1337: This configuration enables and defines the port 

for incoming connections

Let's talk about various other options provided by the Neo4j shell for connecting  
to the local Neo4j server:

• neo4j-shell -path <PATH>: This option shows the path of the database 
directory on the local file system. A new database will be created in case  
the given path does not contain a valid Neo4j database.

• neo4j-shell -pid <PID>: This option connects to a specific process ID.
• neo4j-shell -readonly: This option connects to the local database in the 

READ ONLY mode.
• neo4j-shell -c <COMMAND>: This option executes a single Cypher 

statement and then the shell exits.
• neo4j-shell -file <FILE >: This option reads the contents of the file 

(multiple Cypher CRUD operations), and then executes it.
• neo4j-shell –config - <CONFIG>: This option reads the given 

configuration file (such as neo4j-server.properties) from the  
specified location, and then starts the shell.

The following are the options for connecting to the remote Neo4j server:

• neo4j-shell -port <PORT>: This option connects to the server running on 
a port different to the default port (1337)

• neo4j-shell -host <HOST>: This option shows the IP address or domain 
name of the remote host on which the Neo4j server is installed and running.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 15 ]

Let's move forward and get our hands dirty with the system.

To begin with and to make it simple, first we will insert the data, and then try  
to fetch the same data through the Neo4j shell.

Let's perform the following steps for running our Cypher queries in the Neo4j shell:

1. Open your UNIX shell/console and execute <$NEO4J_HOME>/bin/neo4j 
start. This will start your Neo4j server in another process.

2. In the same console, execute <$NEO4J_HOME>/bin/neo4j-shell to start the 
Neo4j shell.

3. Next, execute the following set of statements on the console:
CREATE (movies:Movie {Name:"Noah", ReleaseYear:"2014"});
MATCH (n) return n;
MATCH (n) delete n;

4. You will see something like the following image on your console:

Yes, that's it…we are done!

We will dive deep into the details of the Cypher statements in the upcoming 
chapters, but let's see the results of each of the preceding Cypher statements:

• CREATE (movies:Movie {Name:"Noah", ReleaseYear:"2014"});: 
This statement creates a node with two attributes, Name:"Noah" and 
ReleaseYear:"2014", and a label, Movie

• MATCH (n) return n;: This statement searches the Neo4j database and 
prints all the nodes and their associated properties on the console

• MATCH (n) delete n;: This statement searches the Neo4j database and 
deletes all the selected nodes

www.it-ebooks.info

http://www.it-ebooks.info/


Your First Query with Neo4j

[ 16 ]

Introducing the Neo4j REST interface
Neo4j exposes a variety of REST APIs for performing the CRUD operations. It also 
provides various endpoints for the search and graph traversals. Neo4j 2.2.x provides 
the additional feature of securing the REST endpoints.

Let's move forward and see a step-by-step process to access and execute the REST 
APIs for performing the CRUD operations.

Authorization and authentication
In order to prevent unauthorized access to endpoints, Neo4j 2.2.x, by default, 
provides token-based authorization and authentication for all the REST endpoints.

Therefore, before running any CRUD operations, we need to get the security token 
so that every request is authenticated and authorized by the Neo4j server.

Let's perform the following steps for getting the token:

1. Open your UNIX shell/console and execute <$NEO4J_HOME>/bin/neo4j 
start to start your Neo4j server, in case it is not running.

2. Download any tool such as SOAP-UI (http://www.soapui.org/), which 
provides the creation and execution of the REST calls.

3. Open your tool and execute the following request and parameters for 
creating data in the Neo4j database:

 ° Request method type: POST
 ° Request URL: http://localhost:7474/authentication
 ° Request headers: Accept: application/json; charset=UTF-8 

and Content-Type: application/json
 ° Additional HTTP header: Authorization= Basic 

<base64(username:password)>

4. In the preceding request, replace <base64(username:password)> with 
the base64 encoded string for username:password. This username is the 
default username, neo4j, and the password is the real password, which was 
provided/changed when you accessed your Neo4j browser for the first time.

5. For example, the base64 encoded string for username, neo4j, and password, 
sumit, will be bmVvNGo6c3VtaXQ=, so now your additional HTTP header will 
be something like the following:

Authorization = Basic bmVvNGo6c3VtaXQ=

www.it-ebooks.info

http://www.soapui.org/
http://www.it-ebooks.info/


Chapter 1

[ 17 ]

The preceding screenshot shows the format of the request along with all the required 
parameters for authorizing the REST-based request to the Neo4j server.

You can also switch off the authentication by modifying dbms.security.
authorization_enabled=true in $NEO4J_HOME/conf/neo4j-server.
propoerties. Restart your server after modifying the property.

Now, as we have a valid token, let's move ahead and execute various CRUD 
operations.

For converting in base64, you can use the online utility at http://
www.motobit.com/util/base64-decoder-encoder.asp or 
you can also use the Python base64 library at https://docs.
python.org/2/library/base64.html.

CRUD operations
Create, read, update, and delete are the four basic and most common operations for 
any persistence storage. In this section, we will talk about the process and syntax 
leveraged by Neo4j to perform all these basic operations.

Perform the following steps for creating, searching, and deleting data in the  
Neo4j database:

1. Download any tool such as SOAP-UI (http://www.soapui.org/), which 
provides the creation and execution of the REST calls.

2. Open your tool and execute the following request and parameters for 
creating data in the Neo4j database:

 ° Request method type: POST
 ° Request URL: http://localhost:7474/db/data/transaction
 ° Request headers: Accept: application/json; charset=UTF-8 

and Content-Type: application/json

www.it-ebooks.info

http://www.motobit.com/util/base64-decoder-encoder.asp
http://www.motobit.com/util/base64-decoder-encoder.asp
https://docs.python.org/2/library/base64.html
https://docs.python.org/2/library/base64.html
http://www.soapui.org/
http://www.it-ebooks.info/


Your First Query with Neo4j

[ 18 ]

 ° JSON-REQUEST: {"statements": [{"statement" : "CREATE 
(movies:Movie {Name:"Noah", ReleaseYear:"2014"});"}]}

 ° Additional HTTP header: Authorization = Basic 
<base64(username:password)>

3. Replace <base64(username:password)> with the actual base64 token, 
which we generated in the Authorization and Authentication section, and 
execute the request. You will see no errors and the output will look 
something like the following screenshot:

In the preceding screenshot, the CREATE request created a label Movie with 
two attributes, Name and ReleaseYear

4. Next, let's search the data, which we created in the previous example. Open 
your tool and execute the following request and parameters for searching 
data in the Neo4j database:

 ° Request method type: POST
 ° Request URL: http://localhost:7474/db/data/transaction
 ° Request Headers: Accept: application/json; charset=UTF-8 

and Content-Type: application/json
 ° JSON-REQUEST: {"statements": [{"statement" : "MATCH (n) 

return n;"}]}

 ° Additional HTTP Header: Authorization = Basic 
<base64(username:password)>

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 19 ]

5. Replace <base64(username:password)> with the actual base64 token, 
which we generated in the Authorization and Authentication section and 
execute the request. You will see no errors and the output will look 
something like the following screenshot:

In the preceding screenshot, the MATCH request searched the complete 
database and returned all the nodes and their associated properties.

6. Next, let's delete the data, which we searched in the preceding step. Open 
your tool and execute the following request and parameters for search, and 
then delete the data from the Neo4j database in a single Cypher statement:

 ° Request method type: POST
 ° Request URL: http://localhost:7474/db/data/transaction/

commit

 ° Request headers: Accept: application/json; charset=UTF-8 
and Content-Type: application/json

 ° JSON-REQUEST: {"statements": [{"statement" : "MATCH (n) 
delete n;"}]}

 ° Header-Parameter: Authorization = Basic realm="Neo4j" 
<BASE64-ENCODED-TOKEN>

7. Replace <BASE64-ENCODED-TOKEN> with the actual base64 token, which  
we generated in the Authorization and Authentication section, and execute  
the request. The response of the delete request will be same as the  
Create request.

www.it-ebooks.info

http://www.it-ebooks.info/


Your First Query with Neo4j

[ 20 ]

In this section, we walked through the process of executing the Cypher queries with 
one of the REST endpoints, /db/data/transaction/commit, which is known as 
Transactional Cypher HTTP Endpoint. There are various other REST endpoints 
exposed by Neo4j for performing traversals, search, CRUD, administration, and a 
health check of the Neo4j server. Refer to http://neo4j.com/docs/stable/rest-
api.html for a complete list of available endpoints, or you can also execute another 
REST point exposed by Neo4j, /db/data, which is known as the service root and 
the starting point to discover the REST API. It contains the basic starting points for 
the database along with some version and extension information.

Linux users can also use the curl command to create and retrieve 
the data using the Neo4j REST APIs (http://neo4j.com/blog/
the-neo4j-rest-server-part1-get-it-going/).

Running queries from the Neo4j browser
In the previous sections, we saw the results of our Cypher queries in the console  
(the Neo4j console) and JSON (REST) format, but both of these formats do not 
provide enough visualization. Also, as data grows, it becomes even more difficult  
to analyze the nodes and their relationships.

How about having a rich user interface for visualizing data in a graph format—a 
series of connected nodes? It will be awesome…correct?

Neo4j provides a rich graphical and interactive user interface for fetching and 
visualizing the Neo4j graph data, the Neo4j browser. The Neo4j browser not only 
provides the data visualization, but, at the same time, it also provides insights into 
the health of the Neo4j system and its configurations.

Let's perform the following steps for executing a Cypher search query from our 
Neo4j browser, and then visualize the data:

1. Assuming that your Neo4j server is running, open any browser such as IE, 
Firefox, Mozilla, or Safari on the same system on which your Neo4j server 
is installed, and enter the URL, http://localhost:7474/browser in the 
browser navigation bar. Now press Enter.

2. Next, enter the server username and password on the login screen (which we 
created/changed during the Neo4j installation), and click Submit.

3. Now, click on the star sign in the panel on the extreme left-hand side, and 
click Create a node from the provided menu.

www.it-ebooks.info

http://neo4j.com/docs/stable/rest-api.html
http://neo4j.com/docs/stable/rest-api.html
http://neo4j.com/blog/the-neo4j-rest-server-part1-get-it-going/
http://neo4j.com/blog/the-neo4j-rest-server-part1-get-it-going/
http://www.it-ebooks.info/


Chapter 1

[ 21 ]

4. Next, enter the following Cypher query to create data in the box provided 
below the browser's navigation bar (besides $): CREATE (movies:Movie 
{Name:"Noah", ReleaseYear:"2014"});. Now click on the right arrow 
sign at the extreme right corner, just below the browser's navigation bar.

5. Click on Get some data from the panel on the left-hand side, and execute the 
following Cypher query to retrieve the data from the Neo4j database: "MATCH 
(n) return n;. You will see the following results:

And we are done! You can also execute the REST APIs by clicking on the REST API 
or see the relationships by clicking on What is related, and how.

There are many other rich, interactive, and intuitive features of the Neo4j browser. 
For the complete list of features, execute :play intro in the same window where 
you executed your Cypher query and it will walk you through the various features 
of the Neo4j browser.

Summary
In this chapter, we learned about the similarity and ease of learning Neo4j for SQL 
developers. We also went through the various licensing and step-by-step installation 
processes of various flavors of Neo4j. Finally, we also executed the CRUD operations 
using Cypher in the Neo4j shell, REST, and Neo4j browser.

In the next chapter, we will dive deep into the Cypher constructs pattern and pattern 
matching for querying Neo4j.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 23 ]

Querying the Graph  
with Cypher

We never live in isolation and this hold true with our data, which is nothing more 
than an interconnection between varied kinds of domains known as graphs.

Graphs are complex and evolving, so, to extract data from these complex graphs, 
we need an efficient query mechanism that focuses on the domain model and 
encourages "What to retrieve?" instead of "How to retrieve?".

Neo4j introduces a powerful, declarative, and SQL-inspired graph query  
language, Cypher.

Cypher is designed to be a humane query language, that leverages the concepts 
of pattern and pattern matching and allows for expressive, efficient querying 
and updating of the graph store. Cypher is a relatively simple but very powerful 
language.

This chapter will provide you with an in-depth understanding of Cypher as a query 
language for Neo4j database. It will guide you through the anatomy of Cypher, and 
then will focus on the heart of Cypher: pattern and pattern matching. We will also 
discuss a real-world example where we will query complex graphs with Cypher.

At the end of this chapter, you will be well versed in the Cypher constructs and  
will be able to write Cypher queries for extracting data from complex graphs  
within no time.

This chapter will cover the following points:

• Basic anatomy of a Cypher query
• Pattern and pattern matching
• Working with nodes and relationships

www.it-ebooks.info

http://www.it-ebooks.info/


Querying the Graph with Cypher

[ 24 ]

Basic anatomy of a Cypher query
In this section, we will talk about the need for a new query language, such as 
Cypher. We will then deep-dive into its constructs, syntax, and structure of  
Cypher queries for retrieving data from the Neo4j database.

Brief details of Cypher
Over the last 25 years, a lot of research has been done on graph query languages and 
now, with the advent of Web 2.0, which is focused on collaboration and sharing, 
they have undergone a recent resurgence. It not only introduced the complexities 
of linked data, such as social networks, but also highlighted the fact that data is not 
isolated and is all about connections in it.

As a result, there are many languages that evolved over time and a few of them also 
gained popularity, such as the ones listed next:

• SPARQL Protocol and RDF Query Language (SPARQL):  
http://en.wikipedia.org/wiki/SPARQL

• Gremlin: http://gremlin.tinkerpop.com/
• Metaweb query language (MQL): https://developers.google.com/

freebase/v1/mql-overview

There are many more languages, but all these languages are complex and difficult to 
maintain. Moreover, they also failed to meet one or more primary goals of the query 
language of the Neo4j database. Considering all aspects, Neo4j introduced a new 
graph query language, Cypher, for querying the Neo4j database. Cypher meets  
the standard goals of graph databases, which are as follows:

• Subgraph matching
• Comparing and returning paths
• Aggregations
• Approximate matching and ranking

Cypher also added some more features such as Declarative, SQL Familiarity, and 
ASCII Pattern, which led it to be better than all the other graph query languages.

Cypher is a declarative graph query language, which focuses on "What to retrieve" 
and not "How to retrieve". It is suitable for both developers and operation 
professionals as it is designed to be a "humane" query language, where its constructs 
are nothing more than plain-English, which is simple and easy to understand.

www.it-ebooks.info

http://en.wikipedia.org/wiki/SPARQL
http://gremlin.tinkerpop.com/
https://developers.google.com/freebase/v1/mql-overview
https://developers.google.com/freebase/v1/mql-overview
http://www.it-ebooks.info/


Chapter 2

[ 25 ]

It borrows most of its structure from SQL and that's the reason it is also called  
SQL alike. Being close to SQL, SQL developers can easily adapt to the constructs  
of Cypher.

Inspired by a number of different languages such as SQL, SPARQL, Haskell, and 
Python, Cypher provides expressive and efficient querying and updating of the 
graph database.

Let's move ahead and understand the execution phases and basic structure of the 
Cypher queries.

Cypher execution phases
As we discussed earlier in this chapter, Cypher is designed to be a humane query 
language, which makes it easy to understand, and it also provides a convenient way 
to express queries. Execution of a Cypher query is a step-by-step process and there 
are various phases before the query is finally executed on the graph.

The various phases of the Cypher query execution are listed as follows:

• Parsing, validating, and generating the execution plan
• Locating the initial node(s)
• Selecting and traversing the relationships
• Changing and/or returning the values

Let's briefly understand the activities performed in each of the phases.

Parsing, validating, and generating the  
execution plan
Parsing and validating Cypher statement(s) is same as we do in the other databases. 
Though it is important, it is a more or a less standard activity for any language. The 
critical step is devising or generating the optimal strategy for searching the graph 
and returning the results to the user in the shortest possible time. Cypher generates 
the execution plan, which details out the complete strategy for graph traversing and 
searching the provided nodes in the given graph. This is a bit tricky, and sometimes 
requires the attention of the developers for analyzing and rewriting their queries 
for performance optimizations. We will talk about Cypher optimization in detail in 
Chapter 3, Mutating Graph with Cypher.

www.it-ebooks.info

http://www.it-ebooks.info/


Querying the Graph with Cypher

[ 26 ]

Locating the initial node(s)
The Cypher queries require a starting point or a node in the graph as the starting 
point for traversals. Neo4j is capable of traversing billions of nodes in a few seconds 
and is also highly optimized for traversing property graphs, but searching the 
complete graph every time is not a good idea. The Cypher queries introduced a 
schema in Neo4j 2.0+ that provides the facility to define indexes on labels and 
properties, and these indexes are automatically updated and used by the Cypher 
queries to find the starting points.

Selecting and traversing the relationships
Neo4j can traverse portions of the graph and perform any requested actions as soon 
as the initial nodes are determined. The execution plan helps Neo4j to determine  
the nodes and the relationships that are needed for completing the execution of  
the Cypher query.

Changing and/or returning the values
This is the final action, once Neo4j has reached the intended node or relationship that 
was requested by the user. Finally, it commits the modifications/creation/deletion 
or simply returns the values.

The structure of Cypher
Cypher borrows most of its structure from SQL, which also means that its queries 
are built up by joining various clauses. A Cypher query is comprised of four major 
components—nodes, properties, label, and relationships. No matter what you query, 
all your Cypher queries will use either all or a combination of these components. 
We briefly talked about the similarity of the Cypher queries with SQL and its 
components in Chapter 1, Your First Query with Neo4j; let's now see the various 
constructs of Cypher and their usage.

Every database has four basic operations—create, read, update, and delete, 
popularly known as the CRUD operations. Cypher supports all four operations, but, 
in comparison, it is more optimized for read operations. This does not mean that you 
should not perform all the other operations, but the objective behind this is that, no 
matter what you do, you have to perform the read operation.

Confusing? But don't worry, stay with me and gradually you will be able to 
understand as we move forward. By the end of this subsection, I assure you  
that you will agree with me.

Let's move forward and understand the constructs for all these basic operations.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 27 ]

The read operations
Read operations are also known as search operations where you provide a starting 
point in a graph and the criteria that need to be met to complete the search.

The next sections will explain the constructs used for the read operations:

MATCH
The MATCH construct is one of the most important and primary clauses of Cypher. It 
is used to specify the patterns that need to be searched in a graph. MATCH is similar to 
SQL FROM, where we need to specify the appearance of a specific pattern that needs 
to be searched or scanned to determine the dataset (also known as subgraph) on 
which further operations need to be performed. MATCH can be used in conjunction 
with any of the create, update, or delete clauses. It is mostly used in conjunction with 
the WHERE clause, which specifies and imposes conditions, restrictions, or predicates 
to the MATCH clause.

Let's take an example of a MATCH statement:

MATCH (x:MALE) WHERE x.age is NOT NULL and x.name is NOT NULL RETURN  
x;

In the preceding example, we are searching the occurrence of all nodes that are 
labeled with MALE and have the two properties, age and name. Both of them contain 
some value, and in the end we want them to be returned back to the invoking 
program, which in our case is a console.

www.it-ebooks.info

http://www.it-ebooks.info/


Querying the Graph with Cypher

[ 28 ]

The preceding figure defines the structure of a MATCH statement, where MATCH is 
always the first clause, and then optionally, it can be preceded by a WHERE clause. At 
the end, it should return some value. RETURN is the final clause where it signifies the 
end of the Cypher query. Except in the create clause, all other clauses in the Cypher 
queries should end with a RETURN clause; otherwise, it is treated as invalid.

Cypher is declarative, and so the query itself does not specify the algorithm for 
performing the search. Cypher will automatically work out the best approach  
to find the start nodes and match the patterns.

For example, predicates in the WHERE clauses can be evaluated before pattern 
matching, during pattern matching, or after finding the matches. However, there 
are cases where you can influence the decisions taken by the query compiler by 
specifying the indexes. We will talk about indexes and other Cypher optimizations  
in Chapter 3, Mutating Graph with Cypher.

OPTIONAL MATCH
The OPTIONAL MATCH statement is exactly the same as the MATCH statement, the only 
difference being that it returns the NULL values for the missing parts of the pattern. 
It can be considered equivalent to the OUTER JOIN keyword in SQL. If there is no 
match for the given Cypher query, MATCH does not return any value, not even NULL. 
However, OPTIONALMATCH returns NULL. For example, the Cypher query given in the 
previous example can be rewritten as follows:

OPTIONAL MATCH (x:MALE) WHERE x.age is NOT NULL and x.name is NULL  
RETURN x;

The result of the preceding Cypher query would return NULL if no match is found.

START
Every Cypher query can have multiple starting points. Using START, we can 
introduce the starting points by legacy index lookups. Legacy indexes were used till 
Neo4j 1.9, but after that they have been replaced with the schema. Legacy indexes are 
still supported but more towards providing backward-compatibility with the earlier 
versions of Neo4j. From Neo4j 2.0+, it is recommended you use only the schema, 
which is implicitly used by the Cypher query during execution. (We will talk in 
detail about the schema in the next chapter.)

An example of the START query is shown as follows:

START n = node:nodesIndx (Name ="John") return n;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 29 ]

In the preceding example, we are searching the nodes with the attribute Name, and 
value "John", in the index named as nodes.

The preceding diagram explains the various adjoining parts of START and the process 
of using START in the Cypher queries.

AGGREGATION
Another important concept in Cypher is to perform aggregations on the output of 
the Cypher queries using various grouping functions such as count, max, and min. 
Cypher supports a wide variety of grouping functions, starting from the simple 
count function and ranging to statistical functions such as standard deviation 
(stdev or stdevp), along with functions such as DISTINCT.

Let's continue the same example that we used in MATCH and OPTIONAL MATCH, and 
return the count of nodes that matches the given criteria:

MATCH (x:MALE) WHERE x.age is NOT NULL and x.name is NOT NULL RETURN  
count(x);

Everything remains the same, except that we replaced x with count(x), which now 
returns the count of nodes, instead of nodes. Let's consider another scenario where 
we want to count the number of nodes with a unique name:

MATCH (x:MALE) WHERE x.age is NOT NULL and x.name is NOT NULL RETURN  
count(DISTINCT x.name);

In the preceding statement, everything remains the same, except that we have 
replaced count(x) with count(DISTINCT x.Name), where DISTINCT gives us  
the nodes with a unique name.

Refer to http://neo4j.com/docs/stable/query-aggregation.
html for a complete list of aggregation functions.

www.it-ebooks.info

http://neo4j.com/docs/stable/query-aggregation.html
http://neo4j.com/docs/stable/query-aggregation.html
http://www.it-ebooks.info/


Querying the Graph with Cypher

[ 30 ]

The create or update operations
The create or update operations perform the same function as in RDBMS. They 
create the various graph elements—nodes, properties, labels, and relationships.

Here we will briefly touch upon create and update operations and cover additional 
details in the next chapter.

The next sections will explain the constructs used to create or update the elements  
of a graph.

Create
The CREATE operation is used for creating a node, property, or a relationship. It is the 
only element that does not need to return anything at the end of the statement.

Consider the following example:

CREATE (n:MALE {Name: "John", Age: 24});

The preceding statement creates a node with the label MALE and two properties, 
where the Name property is of type string and the Age property is of type integer.

The preceding illustration describes the various parts of the CREATE statement and 
the way the Cypher query engine interprets the instructions.

Refer to http://neo4j.com/docs/stable/graphdb-neo4j.
html#graphdb-neo4j-properties for a complete list of the 
data types supported by properties in Cypher.

www.it-ebooks.info

http://neo4j.com/docs/stable/graphdb-neo4j.html#graphdb-neo4j-properties
http://neo4j.com/docs/stable/graphdb-neo4j.html#graphdb-neo4j-properties
http://www.it-ebooks.info/


Chapter 2

[ 31 ]

SET
The SET operation is used for updating labels or properties on nodes and relationships.

For example, let's assume that in the preceding query, we need to update the value of 
Age and change it to 25:

match (n:MALE {name:"John"}) SET n.age = 25 return n;

The preceding query first searches the records that require modifications, and then 
uses SET to update the value of the properties.

MERGE
The MERGE operation is a special type of operation that ensures a node, property, 
label, or relationship exists either by creating a new one or do nothing if it already 
exists in a given graph. It ensures uniqueness among the nodes and avoids creating 
any duplicate graph elements. MERGE is accompanied further with two more 
clauses—ON MATCH and ON CREATE. The ON MATCH clause is executed whenever a 
match is successful, and ON CREATE is executed whenever a match is not successful 
and a new element is to be created in the given graph.

Let's see a couple of examples:

MERGE (n:MALE {name: "John"}) return n;

The preceding example shows a simple MERGE statement that will check whether the 
given criterion exists. If the given criterion exists, it will not do anything; otherwise, 
it will create a new node.

MERGE (n:MALE {name: "John", age:24})
ON MATCH SET n.age= 25, n.last_updatedtimestamp = timestamp()
ON CREATE SET n.craeted_timestamp = timestamp()

The preceding example first matches the criteria provided in the MERGE statement, 
and then defines two more clauses—ON MATCH and ON CREATE.

ON MATCH will be executed in the scenarios where conditions defined with the MERGE 
statement are satisfied; otherwise, ON CREATE will be executed. However, in any 
case, either ON MATCH or ON CREATE will be executed. This would also avoid the 
creation of duplicate elements.

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you 
can visit http://www.packtpub.com/support and register 
to have the files e-mailed directly to you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/


Querying the Graph with Cypher

[ 32 ]

The delete operation
The delete operation is used to remove the nodes and relationships from  
a given graph.

Consider the following example:

MATCH (n:MALE {name: "John", age:24}) delete n;

In the preceding statement, first we search the node, capture it into a variable n,  
and then delete it.

The remove operation, as shown in the next example, is also used for deleting the 
properties and labels from the graph.

Consider the following example:

MATCH (n:MALE {name: "Andrew", age:24}) remove n.age return n;

In the preceding statement, first we search the node, capture it into the variable n, 
use remove to delete one of its properties, namely Age, and then finally return  
the output.

So, by now you should have understood the reason for optimizing reads in Cypher: 
because irrespective of any operation (create, update, or delete), we have to first 
execute the MATCH (read) statement, search for the appropriate location or node in  
the graph, and only then execute the create, update, or delete statement.

Pattern and pattern matching
Pattern and pattern matching are the heart of Cypher. They describe the shape of 
the data that we want to search, create, or update within the provided graph. It is 
imperative to understand pattern and pattern matching as a concept with reference 
to Cypher, so that you can write effective and efficient queries. Before moving 
forward, let's create a small dataset, and then let's see how patterns are applied or 
constructed for various elements of graphs.

Sample dataset
In this section, we will create a small dataset for a social network, which will help us 
in understanding and executing various examples provided further in this section.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 33 ]

Perform the following steps to create a sample dataset:

1. Open your console or shell and then start your Neo4j server by executing 
<$NEO4J_HOME>/bin/neo4j on the console.

2. On the same console, execute <$NEO4J_HOME>/bin/neo4j-shell.
3. Now, execute the following set of statements to clean up your database:

MATCH (n)-[r]-(n1) delete n,r,n1;
MATCH (n) delete n;

The first query search removes all nodes and their associated relationships, 
and the second query removes all nodes that do not have any relationships.

4. Next, execute the following set of statements on your Neo4j console to create 
some entries for males and females:
CREATE (bradley:MALE:TEACHER {name:'Bradley', surname:'Green', 
age:24, country:'US'});
CREATE (matthew:MALE:STUDENT {name:'Matthew', surname:'Cooper', 
age:36, country:'US'});
CREATE (lisa:FEMALE {name:'Lisa', surname:'Adams', age:15, 
country:'Canada'});
CREATE (john:MALE {name:'John', surname:'Goodman', age:24, 
country:'Mexico'});
CREATE (annie:FEMALE {name:'Annie', surname:'Behr', age:25, 
country:'Canada'});
CREATE (ripley:MALE {name:'Ripley', surname:'Aniston', 
country:'US'});

5. Now execute the following set of statements on your Neo4j console to create 
relationships between males and females:
MATCH(bradley:MALE{name:"Bradley"}),(matthew:MALE{name:"Matthew"})
WITH bradley, matthew
CREATE (bradley)-[:FRIEND]->(matthew) , (bradley)-[:TEACHES]-
>(matthew);
MATCH (bradley:MALE{name:"Bradley"}),(matthew:MALE{name:"Matth
ew"})
WITH bradley,matthew
CREATE (matthew)-[:FRIEND]->(bradley);
MATCH (bradley:MALE{name:"Bradley"}),(lisa:FEMALE{name:"Lisa"})
WITH bradley,lisa
CREATE (bradley)-[:FRIEND]->(lisa);
MATCH (lisa:FEMALE{name:"Lisa"}),(john:MALE{name:"John"})
WITH lisa,john
CREATE (lisa)-[:FRIEND]->(john);

www.it-ebooks.info

http://www.it-ebooks.info/


Querying the Graph with Cypher

[ 34 ]

MATCH (annie:FEMALE{name:"Annie"}),(ripley:MALE{name:"Ripley"})
WITH annie,ripley
CREATE (annie)-[:FRIEND]->(ripley);
MATCH (ripley:MALE{name:"Ripley"}),(lisa:FEMALE{name:"Lisa"})
WITH ripley,lisa
CREATE (ripley)-[:FRIEND]->(lisa);

And we are done!

In the next sections, we will explore the various aspects of patterns and pattern 
matching, and you can execute all the provided examples in this section on the  
Neo4j console against the sample dataset.

Pattern for nodes
The most basic form of pattern is where we define it by using a pair of parentheses 
and providing a name within the parentheses. Consider the following example:

MATCH (a) return a;or MATCH a return a;

In the preceding example, we are describing a pattern for node, and by using MATCH 
we are requesting to return all the nodes. We can also omit parentheses in case we 
are not using any properties or labels with nodes. However generally, it is a good 
practice and it's recommended to use parentheses.

Pattern for labels
Labels are a new addition by Neo4j to standard property graphs. It is something 
similar to annotating your nodes for grouping or categorizing them into buckets, 
which further helps in searching. One or more labels can be defined on nodes. 
Consider the following example:

MATCH (n:MALE) return n;or MATCH (n:MALE:TEACHER) return n;

In the preceding example, we are searching for all those nodes that are annotated 
with the label MALE, or with multiple labels, MALE and TEACHER.

Pattern for relationships
Relationships are the connection between two given nodes. They can be 
unidirectional or bidirectional between the two nodes. They are defined within 
square brackets and are given a user-defined name for further reference within  
the search queries.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 35 ]

Unidirectional relationships are specified using an arrow sign with a pointed head 
specifying the direction in which it is flowing. Consider the following example:

MATCH (x:TEACHER)-[r:TEACHES]->(y:STUDENT) return x,r,y;

The preceding statement searches for all those nodes that are annotated with the 
labels TEACHER and STUDENT, and are further linked with the relationship TEACHES. 
Simply reading or interpreting the preceding statement in plain English will result 
in—"Give me all the nodes where node x is a teacher and teaches a student; that is, 
node y". That's the reason we said that Cypher is designed to be a "humane" query 
language, that can be interpreted just by reading.

Bidirectional relationships are specified using an arrow sign with no pointed head. 
As the name suggests, it is bidirectional and can flow from either end. Consider the 
following example:

MATCH (x:MALE)-[r:FRIEND]-(y:FEMALE) return x,r,y;

The preceding statement searches for all those nodes that are annotated with 
the labels MALE and FEMALE, and irrespective of any direction, they are related to 
each other by a relationship named as FRIEND. Simply reading or interpreting the 
preceding statement in plain English will result in—"Give me all those nodes where 
node x is a male and node y is a female, and both of them are friends".

Pattern for properties
Properties are the other features of property graphs. One or more properties can be 
defined for a node or relationship.

Properties are key/value pair wrapped around the curly braces and two properties 
are separated by a comma. Consider the following example:

Match (a:MALE { name: "John", age : 24 }) return a;

In the preceding example, we are searching for a node that is annotated with the 
label MALE and has two properties name and age, with the values as "John" and 24.

Using the where clause with patterns
Pattern alone cannot satisfy all our needs, and that's the reason the where clause was 
introduced; it can be used with patterns for further filtering of data. The where clause 
in itself is not a clause and cannot be used independently, but it has to be used in 
conjunction with MATCH, OPTIONALMATCH, START, or WITH.

www.it-ebooks.info

http://www.it-ebooks.info/


Querying the Graph with Cypher

[ 36 ]

Consider the following example:

MATCH (n)
where n.name = "John" and n.age< 25
return n;

In the preceding example, we are trying to search for those nodes where the value of 
the name property is "John" and the value of the age property is less than 25.

Let's see some more examples based on the various features provided by where.

Using patterns in the where clause
Patterns are also known as expressions in Cypher and they return collection of paths. 
The collection expressions are also predicates—an empty collection represents false 
and a non-empty collection represents true.

We cannot use commas between multiple paths, as we do in MATCH, but we can use 
AND to specify and combine multiple patterns in a single path.

Consider the following example:

MATCH (n)
where n.name IN["John","Andrew"] and n.age is Not Null
return n;

In the preceding query, we are using a collection of values for filtering the value of 
the name property and also instructing it to return only those nodes that have some 
value of the age property. We can also use Not or regular expressions in the filters.

Consider the following example:

MATCH (n)
where n.name =~"J.*"
return n;

The preceding query will return all those nodes where the value of the name property 
starts with the letter J.

Using general clauses with patterns
There are a few other general clauses that can also be used with patterns to make the 
results more meaningful. Let's discuss these general clauses.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 37 ]

The order by clause
Similar to SQL, Cypher also provides the order by clause, which can return the results 
in a specific order (ascending or descending). Consider the following example:

MATCH (n)return n ORDER by n.name, n.age;

The preceding query will return the nodes sorted in the ascending order, first by 
name, and then by the age property of the node. Adding desc at the end of the 
statement will return the results in descending order.

The limit and skip clauses
The limit clause only returns the subset of the results starting from the top,  
whereas skip will ignore the given number of elements from the top. Consider  
the following example:

MATCH (n)return n ORDER by n.name, n.age LIMIT 3;

The preceding query will only return the first three nodes and ignore the rest of the 
results/nodes. The following query will only ignore the first three nodes and return 
the rest of the results/nodes:

MATCH (n)return n ORDER by n.name, n.age SKIP 3;

We can also use the combination of SKIP and LIMIT to return the results appearing 
in the middle. Consider the following example:

MATCH (n)return n ORDER by n.name, n.age SKIP 3 LIMIT 2;

The preceding query will first ignore the first three nodes, return the next two nodes, 
and ignore the rest of the results/nodes.

The WITH clause
The WITH clause is another important clause where you can join multiple patterns 
and the outcome of one pattern can be used as an input to the other pattern in 
single Cypher query. There are multiple usages of WITH, where you can specify 
single query for reading and writing or limiting the number of nodes passed on the 
subsequent MATCH clauses, or introduce aggregates, which can be further used in the 
WHERE clauses. Let's see a few examples:

MATCH (x{ name: "Bradley" })--(y)-->()
WITH y, count(*) AS cnt
WHERE cnt> 1
RETURN y;

www.it-ebooks.info

http://www.it-ebooks.info/


Querying the Graph with Cypher

[ 38 ]

Executing the preceding statement on the Neo4j console will produce results similar 
to the one shown in the following illustration:

The preceding screenshot shows the usage of the WITH clause with the MATCH 
statement.

The preceding query first provides all the nodes that are connected to the x node 
(having the name property "Bradley") with an outgoing relationship. It then 
introduces the aggregate function count to check that the count of nodes connected 
to x is greater than 1.

Let's see one more example of using the WITH clause in conjunction with the  
CREATE clause:

MATCH (x { name: "Bradley" })--(y)-->()
WITH x
CREATE (n:Male {name:"Smith", Age:"24"})-[r:FRIEND]->(x)
returnn,r,x;

The preceding query first provides all the nodes that are connected to the x node 
(having the name property "Bradley") with an outgoing relationship. It then creates 
one more node (with the name property "Smith"), which is connected to the node 
returned by the MATCH clause.

The UNION and UNION ALL clauses
The UNION and UNION ALL clauses work in the same way they work in SQL. While 
the former joins two MATCH clauses and produces the results without any duplicates, 
the latter does the same, except it returns the complete dataset and does not remove 
any duplicates. Consider the following example:

MATCH (x:MALE)-[:FRIEND]->() return x.name, labels(x)
UNION
MATCH (x:FEMALE)-[:FRIEND]->()return x.name, labels(x);

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 39 ]

Executing the preceding query will produce the following results:

In the preceding query, we are searching all the nodes that have label as either MALE 
or FEMALE, and are connected with the other nodes with the relationship named as 
FRIEND. If we replace it with UNION ALL, it will return the complete dataset, which 
will also have duplicate nodes.

In this section, we discussed the patterns for nodes, labels, relationships, and 
properties. We also talked about various clauses such as WHERE, UNION, UNION ALL, 
order by, and WITH, which are used to create and define various patterns for 
querying the underlying graph database.

Let's work more with nodes and relationships and see some real-world examples in 
the next section.

Working with nodes and relationships
In this section, we will discuss complex and real world scenarios/problem 
statements and solve those problem statements with the help of Cypher using 
pattern and pattern matching.

Let's enhance our sample dataset that we created in the previous section and add 
some more data. We will add some movies and also have our users provide ratings 
for them.

Perform the following steps for adding movies and ratings:

1. Open your console or Shell and start your Neo4j server by executing 
<$NEO4J_HOME>/bin/neo4j on console (in case it is not started).

2. On same console execute <$NEO4J_HOME>/bin/neo4j-shell.

www.it-ebooks.info

http://www.it-ebooks.info/


Querying the Graph with Cypher

[ 40 ]

3. Now execute the following set of statements to create some movies:
CREATE (firstBlood:MOVIE {name:"First Blood"});
CREATE (avengers:MOVIE {name:"Avengers"});
CREATE (matrix:MOVIE {name:"Matrix"});

4. Next, execute the following set of statements on your Neo4j-console to have 
users rate the movies:
MATCH   
(bradley:MALE{name:"Bradley"}),(matthew:MALE{name:"Matthew"}),(lis
a:FEMALE{name:"Lisa"}), (john:MALE{name:"John"}), (annie:FEMALE{na
me:"Annie"}),(ripley:MALE{name:"Ripley"}),
(firstBlood:MOVIE {name:"First Blood"}), (avengers:MOVIE 
{name:"Avengers"}), (matrix:MOVIE {name:"Matrix"})
WITH bradley, matthew, lisa, john, annie, ripley, firstBlood, 
avengers, matrix
CREATE (bradley)-[:HAS_RATED{ratings:5}]->(firstBlood),
 (matthew)-[:HAS_RATED{ratings:4}]->(firstBlood),
 (john)-[:HAS_RATED{ratings:4}]->(firstBlood),
 (annie)-[:HAS_RATED{ratings:4}]->(firstBlood),
 (ripley)-[:HAS_RATED{ratings:4}]->(firstBlood),
 (lisa)-[:HAS_RATED{ratings:5}]->(avengers),
 (matthew)-[:HAS_RATED{ratings:4}]->(avengers),
(annie)-[:HAS_RATED{ratings:3}]->(avengers);

And we are done !!!

The final dataset will contain the following features:

We have a few males and females and these males and females are either friends or 
teacher and student. These males and females also watch movies and provide ratings 
for those movies.

Now let's analyze the dataset in the form of questions and answers, where we will 
raise different questions and build/design the Cypher queries to answer those 
questions. This is also known as uncovering the pattern within the data, which 
otherwise is difficult to see with the naked eye.

1. I am Bradley and I live in US. Who are the users that live in the same country 
as I do?
Cypher Query - match (x {country:"US"}) return x;

The above query searches the country attribute of the users and returns all 
the users who live in same country as Bradley.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 41 ]

2. How many males have females as friends?
Cypher Query - match (x:MALE)-[r:FRIEND]->(y:FEMALE) return  
x.name as MaleName,type(r) as Relation,y.name as  
FemaleName;

Executing the above query on the Neo4j-console will produce the following 
results:

The preceding query searches for all males who have females as friends. 
There are two things which we should focus on in this query. First, that 
the relationship is uni-directional; that is we are only checking males who 
are friends with females and not vice-versa, because that was the question. 
Second, that the as keyword in the RETURN clause, where we are renaming 
the default column name, is exactly similar to the feature provided by SQL.

3. I am Bradley and I want to know the people who are friends of my friends 
and are also my friends:
Cypher Query - match (x{name:"Bradley"})-[:FRIEND]-  
>(friend)<-[:FRIEND]-(otherFriend) return distinct  
friend.name as CommonFriend;

Executing the above query on the Neo4j-console will produce the following 
results:

The preceding query searches for all the friends of Bradley and then further 
queries their friends using the MATCH statement.

www.it-ebooks.info

http://www.it-ebooks.info/


Querying the Graph with Cypher

[ 42 ]

4. I am Bradley and I want to know the people who are friends of my friends 
but are not my friends:
Cypher Query - Match (me{name:"Bradley"})-[r:FRIEND]-  
(myFriend),(myFriend)-[:FRIEND]-(otherFriend)
where NOT (me)-[:FRIEND]-(otherFriend)
return otherFriend.name as NotMyFriends;

Executing the above query on the Neo4j-console will produce the following 
results:

The preceding query searches for all the friends of Bradley and then  
further queries their friends using the MATCH statement. The relationship  
is bi-directional because now we do not care and we need to find all the 
nodes which are not connected to Bradley but are connected to each FRIEND 
of Bradley.

5. Find out all the movies and the number of times they have been rated by  
the users:
Cypher Query - MATCH (movie:MOVIE)<-[r:HAS_RATED*0..]-  
(person)
return  movie.name as Movie, count(person)-1 as  
countOfRatings order by countOfRatings;

Executing the above query on the Neo4j-console will produce the following 
results:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 43 ]

The preceding query searches for all the movies and then searches for 
persons who have rated them. When we use 0 in variable length paths then 
two identifiers can point to the same node. If the distance between two nodes 
is zero, they are by definition the same node. So to avoid the count of same 
nodes, we are simply doing -1 from the total count that provides us with the 
exact count of ratings for all movies in our database.

6. Find out all the movies that are rated by Bradley and have also been rated by 
his friends:
Cypher Query - match (x{name:"Bradley"})-[:FRIEND]-  
>(friend)-[r:HAS_RATED]->(movie) return friend.name as  
Person, r.ratings as Ratings,movie.name as Movie;

Executing the above query on the Neo4j-console will produce the following 
results:

The preceding query first searches for all the friends of Bradley and then 
filters out all friends of Bradley who have rated the movies. Finally, it 
returns the results along with the rating of different movies provided by 
Bradley's friends.
In this section, we discussed various kinds of real-world examples, learned 
how to understand the questions, and discussed the strategy that should be 
used for building/creating/designing Cypher queries.

Summary
In this chapter we have learned about the similarity and ease of learning Neo4j for 
SQL developers, we have gone through licensing and the step-by-step installation 
process of various flavors of Neo4j and finally we have also executed CRUD 
operations using Cypher in Neo4jshell, ReST, and Neo4j Browser.

In next chapter, we will deep-dive into the Cypher constructs and Pattern and 
Pattern matching, for querying Neo4j.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


[ 45 ]

Mutating Graph with Cypher
Writing to databases or mutating the underlying data in databases' is one of the 
important aspects of any Database Management System (DBMS). It provides a 
structure to your data within the underlying datastore. It is imperative to have a 
performance-efficient mechanism for mutation, so that your graph database can be 
available for further querying in the shortest possible time.

Apart from being performance-efficient, we also need to ensure that the mutation/
write process follows the following principles of transaction management:

• Atomicity (all or nothing): Every write is atomic in nature, so that if any part 
of a transaction fails, the database state is left unchanged

• Consistency (from one valid state to another): At any point in time, data in 
the database is in a consistent state where all users read the same data

• Isolation: Each transaction should occur independently and modified data 
should not be accessible to any other operations during a transaction

• Durability: Completed transactions should remain persistent

These four principles are popularly known as ACID properties.

Neo4j has all the features of a DBMS where it is not only performance-efficient but 
also transactional, supports ACID properties, and finally ensures data integrity, 
resulting in a good transaction behavior.

In the last chapter, we discussed the read aspects of Neo4j. In this chapter, we will 
talk and discuss the write aspects of Neo4j.

This chapter will cover the following topics:

• Creating nodes and relationships
• Transforming nodes and relationships
• Cypher query optimizations

www.it-ebooks.info

http://www.it-ebooks.info/


Mutating Graph with Cypher

[ 46 ]

Creating nodes and relationships
In this section, we will discuss the various syntactical details for creating nodes and 
relationships using Cypher.

Nodes and relationships are the two most important elements of Neo4j graph 
databases. They are created using the CREATE clause of Cypher. Let us move forward 
and understand the process of creating nodes and relationships using Cypher.

Working with nodes
Node is one of the core elements of Neo4j database. Every other element of Neo4j is 
either connected to nodes or is used to enhance the definition/description of a node. 
Let us delete the existing data, which we created in the previous chapter from our 
Neo4j database, and then see the step-by-step process of creating nodes.

Perform the following steps to clean up your Neo4j database:

1. Open your Linux console or shell and execute <$NEO4J_HOME>/bin/neo4j-
shell.

2. Execute the following Cypher queries to delete the data from the Neo4j 
database:
MATCH (n)-[r]-(n1) delete r,n.n1;
MATCH n delete n;

3. And we are done !!!

The preceding Cypher queries deleted all nodes and relationships from your  
Neo4j database. Let us move forward and now see the creation of nodes with  
the CREATE clause.

Single node
The following is the query for creating a single node:

• CREATE (n); or CREATE (); or CREATE (n) return n;

The preceding query creates a single node. In the CREATE statement we can define a 
user-defined variable for unique identification of the node, which can further query 
or refer to the node within the same scope. For example, we have defined n in the 
preceding Cypher query but in case we do not plan to use it in the same context 
anywhere further, we can omit n and just define the empty brackets.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 47 ]

The CREATE statements may or may not be preceded with the return clause. In 
case we use the return clause then it will return and print the output of the CREATE 
clause; if we do not use return, then it will silently create the given entities in the 
CREATE clause and will not return or print anything on the console.

Neo4j assigns a unique ID to each and every node, which uniquely identifies and 
distinguishes each and every node within the Neo4j database. These unique IDs are 
internal to Neo4j and may vary with each and every Neo4j installation or version. It 
is advisable not to build any user-defined logic using these node IDs.

The output of the previous Cypher query will produce the following result:

The preceding illustration shows the output of the CREATE clause. As we have used 
the return clause, so the output of the CREATE clause is printed on the console. Node 
IDs are defined in square brackets, in our case [42]. Though it is not advisable/
recommended to develop any user-defined logic around the node IDs but if in the 
rarest of rare cases you still want to, then you can use ID(<Ref of Node>) for 
querying upon the node IDs. For example, to print all node IDs within our Neo4j 
database, we can execute the following Cypher statement:

MATCH (n) return ID(n);

You can use the ID() function with other clauses such as where. For example, you 
can execute the following Cypher statement to search a particular node using the 
node ID:

MATCH (n) where id(n)=42 return n;

The previous illustration shows the output of the query using ID() in the where 
clause. However, as we earlier discussed, node IDs are internal to Neo4j, so the 
output of the preceding statement may vary and will depend upon the installation 
and versions of the Neo4j database.

www.it-ebooks.info

http://www.it-ebooks.info/


Mutating Graph with Cypher

[ 48 ]

Multiple nodes
The CREATE statement allows us to create multiple nodes in a single CREATE clause. 
For example:

• CREATE (n),(n1); or CREATE (), (); or CREATE (n), (n1) return 
n,n1;

Everything remains the same as we did for creating a single node, except that the 
preceding Cypher statement adds a comma and defines some more nodes to create 
multiple nodes using the CREATE clause. The outcome of the preceding statement 
may vary and will depend upon the installation and versions of Neo4j Database.

Node with labels
Neo4j provides the feature of tagging/grouping/categorizing similar nodes by 
associating them with a label. Labels can be further used to create an index and also 
help in optimized searching of nodes. The following is the Cypher query that creates 
a node with a label:

• CREATE (:MALE); or CREATE (n:MALE) return n;

Executing the preceding statement on Neo4j-shell will produce results that will be 
similar to the following illustration:

In the previous statement, we are creating a node that is tagged with a label 
named as MALE. On Neo4j-shell, we can see the results as shown in the preceding 
illustration—Nodes Created: 1 and Labels added: 1.

Now we can search this newly created node by referencing the label in our search 
queries. For example, the following is the Cypher query that searches all the nodes 
associated with the label MALE:

MATCH (n:MALE) return n;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 49 ]

We can also add or associate a node with more than one label. For example, we can 
also add the country as another label:

MATCH (n:MALE:US) return n;

Node with properties
Properties are another important element of Neo4j. Properties are the key-value pairs 
and we can define and associate them either with nodes or relationship. Properties 
hold the actual data which can be further used in searching. The following is the 
Cypher query that creates a node with properties:

CREATE (x:MALE{name:"John"});

In the preceding query, we are creating a node that is tagged with a label MALE, and 
at the same time it also contains an attribute name. We can define more than one 
attribute for a node by separating each of them by a comma. For example, in the 
previous query we can add the age attribute and the new Cypher query would  
be as follows:

CREATE (x:MALE{name:"John",age:25});

Running the preceding query will produce following results:

As shown in the previous screenshot, executing the query we just created will add a 
node, label, and property in a single Cypher CREATE statement.

Properties also provide flexibility to define the data types. For example, in the 
previous example we defined two properties—name, which is of type String, and 
age, which is of type Integer. Property values can either be a primitive or an array  
of primitive. NULL is not a valid value of a property but can be handled by not 
defining the key.

www.it-ebooks.info

http://www.it-ebooks.info/


Mutating Graph with Cypher

[ 50 ]

The following is a list of data types supported by properties:

Type Description Range of Values
Boolean true/false
byte or byte[] A single byte or array of bytes. 

It is an 8-byte Integer.
-128 to 127, inclusive of 
both ends.

short or short[] A single short or array of shorts. 
It is a 16-byte Integer.

-32768 to 32767, inclusive 
of both ends.

int or int[] A single integer or array of 
integers. It is a 32-byte Integer.

-2147483648 to 
2147483647, inclusive of 
both ends.

long or long[] A single long or array of longs. 
It is a 64-byte Integer.

-9223372036854775808 
to 9223372036854775807, 
inclusive of both ends.

float or float[] 32-bit IEEE 754 floating-point 
number.

double or double[] 64-bit IEEE 754 floating-point 
number.

char or char[] 16-bit unsigned integers 
representing Unicode 
characters.

0 to 65535

String or String[] It is a sequence of Unicode 
characters.

Let's take an example where we have to define a node with a label MALE and property 
country_visited, which is of type String[]. Refer to the following code:

CREATE (n:MALE {country_visited:["US","India","China"]});

Array of values are defined within the square brackets, same as we have defined in 
the previous Cypher query. Similarly, we can define the array of other data types 
within the square brackets. Even while searching, we have to use the same format 
where we have to define the search criteria for arrays within square brackets:

match (n:MALE{country_visited: ["US","India","China"]}) return n;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 51 ]

Working with relationships
Relationships are another core element and the heart of Neo4j graphs. There is  
no significance of any node or property until and unless it is connected to other 
nodes, which essentially defines the connection between two entities and their 
relationship with each other. We briefly touched upon the relationships in the 
previous chapter where we talked about the significance of relationships in pattern 
and pattern-matching. Let us get down to basics and see the process of creating 
relationships between two (or more than two) nodes.

To begin with, let's clean up our database and then see the step-by-step process of 
creating nodes and relationships.

Perform the following steps to clean up your Neo4j database:

1. Open your Linux console or shell and execute "<$NEO4J_HOME>/bin/neo4j-
shell".

2. Execute the following Cypher queries to delete the data from Neo4j database:
MATCH (n)-[r]-(n1) delete r,n.n1;
MATCH n delete n;

3. The preceding Cypher queries deleted all the nodes and relationships  
from your Neo4j database. Let's move forward and now see the creation  
of relationships with the CREATE clause.

Single relationships
Relationships can be unidirectional (-> or <-) or bidirectional (-), are defined in 
square brackets, and are given a user-defined name that can be further referred  
in the search queries.

The following is a Cypher statement to create a unidirectional relationship between 
two nodes:

CREATE (n:MALE{name:"John"})-[r:FRIEND]->(n:FEMALE {name: "Kate"});

or

CREATE (n:MALE{name:"John"})-[r:FRIEND]->(n1:FEMALE {name: "Kate"})  
return n,r,n1;

www.it-ebooks.info

http://www.it-ebooks.info/


Mutating Graph with Cypher

[ 52 ]

Executing the preceding Cypher statement will produce the following results:

In the previous query, we are creating two nodes, one relationship, and  
two properties. Let us understand the different parts of the query through  
the following diagram:

The preceding figure defines the various parts of a Cypher query and how they are 
connected with each other to create a relationship between two nodes.

Multiple relationships
Multiple relationships are created in the same way as we created a single 
relationship. The only difference here is that we are creating more than one 
relationship between more than one node.

For example, let's assume that we need to create four different nodes with the 
following specifications:

• Node with a label MALE and a property name with a value Pat
• Node with a label MALE and a property name with a value Smith
• Pat and Smith are friends

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 53 ]

• Node with a label FEMALE and a property name with a value as Kate
• Smith and Kate are friends
• Node with a label FEMALE and a property name with a value Kim
• Kate and Kim are friends

Complex isn't it? Actually it is not.

If we follow the instructions as they are defined and start forming the Cypher query 
following each step, then we will see that it is very easy.

Considering the preceding example, the following are the steps for forming the 
Cypher query:

1. Create a Cypher query to create a node with property name with value Pat:
CREATE (m1:MALE{name:"Pat"})

2. Create a Cypher query to create a node with property name with value Smith:
CREATE (m1:MALE{name:"Smith"})

3. Next, define the relationship between Pat and Smith, and give the name of 
that relationship as FRIEND:
CREATE (m1:MALE{name:"Pat"})-[r1:FRIEND]-> (m2:MALE 
{name:"Smith"})

4. And so on…..
5. The final Query will look as follows:

CREATE (m1:MALE{name:"Pat"})-[r1:FRIEND]-> 
(m2:MALE{name:"Smith"})-[r2:FRIEND]->(f1:FEMALE{name:"Kate"})-
[r3:FRIEND]->(f2:FEMALE{name:"Kim"})
return m1.name, type(r1), m2.name, type(r2), f1.name, type(r3), 
f2.name;

6. Execute the preceding query on your neo4j-console and the results will be 
similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/


Mutating Graph with Cypher

[ 54 ]

7. The previous illustration shows the creation of multiple relationships within 
a single CREATE statement. You can open your Neo4j browser by opening 
URL http://localhost:7474/ and clicking on Get Some Data from 
your navigation pane on the left-hand side of your browser. You will see 
something similar to the following illustration:

For more information on Neo4j browser, refer to Chapter 1, Your First Query  
with Neo4j.

The CREATE clause does not provide any syntax for defining 
bidirectional relationships. However we can execute two CREATE 
statements with the same set of nodes, but one with à and other withß.

Relationships with properties
Similar to nodes, we can also define properties for relationships. For example, let's 
assume that we need to create two nodes and connect these nodes with relationship 
named as MARRIED_TO, and also define a property as year_of_marriage. The 
Cypher query would be:

CREATE (n:MALE{name:"John"})-[r:MARRIED_TO {year_of_marriage:1978}]-  
>(f:FEMALE {name: "Kate"}) return n.name, type(r),f.name;

The Cypher query we just saw is similar to what we used for nodes, except that here 
apart from nodes we are also defining the property of the relationship within the 
curly braces.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 55 ]

Nodes and relationships with full paths
We can also capture the complete CREATE clause and pattern into a variable,  
so that all parts of the pattern which are not in scope can be created. For example,  
the previous statement can be rewritten as follows:

CREATE p = (n:MALE{name:"John"})-[r:MARRIED_TO  
{year_of_marriage:1978}]->(f:FEMALE {name: "Kate"})
return p;

Creating unique nodes and relationships
In all the preceding examples, we have seen that the CREATE statement is used to 
create new nodes, but the only issue is that it blindly creates them and this may  
cause duplicates if the nodes already exist within the given graph.

In order to avoid any duplicate nodes, Neo4j provides CREATE UNIQUE. The CREATE 
UNIQUE statement is somewhere in between MATCH and CREATE, where it will match 
whatever it can and will create the missing elements.

It uses the existing parts of the graphs and ensures the fewest possible changes to the 
given graph without any duplicates. It will throw an error in case it finds the existence 
of the same patterns at multiple places in the given graph, and so we need to ensure 
that the pattern provided in the CREATE UNIQUE statement should be unique.

For example, refer to the following:

match (andres { name:'Andres' })
CREATE UNIQUE (andres { name:'Andres' })-[:WORKS_WITH]->(michael {  
name:'Michael' });

In the preceding example, CREATE UNIQUE will match the given pattern and will then 
evaluate the remaining pattern. It will see whether any relationship exists between 
node Andres and node Michael; and if not, then it will create a new relationship  
and node.

CREATE UNIQUE and MERGE
We discussed the MERGE clause in Chapter 2, Querying the Graph with Cypher. Let's have 
a quick recap and then we will discuss some more examples/capabilities of MERGE.

www.it-ebooks.info

http://www.it-ebooks.info/


Mutating Graph with Cypher

[ 56 ]

The MERGE clause is a combination of MATCH and CREATE. It searches for a given node, 
property, label, or relationship; if it already exists in a given graph, then nothing is 
done, but if not found, then it creates a new one. Similar to CREATE UNIQUE, it ensures 
uniqueness among the nodes and avoids creating any duplicate graph elements. 
The only difference is that CREATE UNIQUE can work on partial matches while MERGE 
either creates a whole pattern or does nothing at all. It is like all or nothing.

The MERGE clause is accompanied further with two more clauses—ON MATCH and 
ON CREATE. The ON MATCH clause is executed whenever a match is successful, and 
ON CREATE is executed whenever a match is not successful and a new element is to 
be created in the given graph. In contrast to CREATE UNIQUE, MERGE can work upon 
indexes and labels, and can even be used for single node creation.

Let's take an example and create three nodes and then define the relationship 
between all the three. Refer to the following query:

CREATE (f1:FEMALE {name: "Sheena"}), (m:MALE {name: "Oliver"}),  
(f2:FEMALE {name:"Sally"}),
f1-[r:FRIEND]->m-[r1:FRIEND]->f2 return f1.name,r,m.name,r1,f2.name;

Next, let's assume that we also need to create a relationship between Sally and 
Sheena, but at the same time need to ensure that they both are also connected  
to Oliver.

So here we will use the MERGE statement that will match the existing elements and 
will create the missing elements:

MATCH (f1:FEMALE {name: "Sheena"}), (m:MALE {name: "Oliver"}),  
(f2:FEMALE {name:"Sally"})
MERGE f1-[r:FRIEND]->m-[r1:FRIEND]->f2-[r2:FRIEND]->f1 return  
f1.name,r,m.name,r1,f2.name;

The MERGE clause was introduced in Neo4j 2.0.x  and 
may replace CREATE UNIQUE.

Working with constraints
Neo4j 2.0.x introduced the concept of applying constraints on labels. As of now, only 
UNIQUE constraint is available but in future it is expected to have more constraints.

The following is the syntax for creating a UNIQUE constraint on a label MALE:

CREATE CONSTRAINT ON (n:MALE) ASSERT n.name IS UNIQUE;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 57 ]

This previous statement will create a constraint on label MALE and ensure that the 
property name is unique.

For dropping the constraint, you simply need to execute the following statement:

DROP CONSTRAINT ON (n:MALE) ASSERT n.name IS UNIQUE;

Constraint also helps in the MERGE statement where, if it finds the existing nodes, 
then it simply returns and does not create any duplicate nodes. For example, 
executing the next statement will simply return as we already UNIQUE constraint  
on the nodes having label as MALE:

MERGE (f:FEMALE {name: "Sheena"}) return f;

Transforming nodes and relationships
In this section, we will discuss updating labels, properties, and relationships.

Updating node properties
The properties of a node are modified by using the following Cypher statement:

MATCH (f:FEMALE {name: "Sheena"})
SET f.surname = "Foster"
return f;

The preceding statement will find the node Sheena and will add or update (if it 
already exists) the property surname with a new or modified value. For removing  
the property, just replace the SET statement in the preceding Cypher query with  
SET f.surname = NULL. We can also set multiple properties by separating them 
with a comma.

The REMOVE statement is another construct provided by Cypher for removing the 
properties of a node. For example, we can also execute the following statement for 
removing the property surname:

MATCH (f:FEMALE {name: "Sheena"})
REMOVE f.surname
return f;

www.it-ebooks.info

http://www.it-ebooks.info/


Mutating Graph with Cypher

[ 58 ]

Updating a label
Labels can also be updated in the same fashion as node properties. Continuing our 
previous example, let's add one more labels to our existing node Sheena, which 
identifies the meal preference—vegetarian or non-vegetarian:

MATCH (f:FEMALE {name: "Sheena"})
SET f:NONVEG
return f;

Now let's assume Sheena changed her meal preferences and decided to be a 
vegetarian; so now we need to execute the following statement to modify the label:

MATCH (f:FEMALE {name: "Sheena"})
REMOVE f:NONVEG
SET f:VEG
return f;

We can also add multiple labels by separating them with a : symbol. For example, 
let's assume we also need to add the country as a label for the node Sheena, so the 
previous SET statement can now be rewritten as SET f:VEG:US.

Setting a label on a node that already has the same label 
will not make any changes to the node. Setting labels is an 
idempotent operation.

Updating relationships
Unlike properties and labels, there is no syntax for updating relationships. The 
only process to update relationships is to first remove them and then create new 
relationships. For example, let's assume that Sheena and Oliver are not friends  
any longer, so we will execute the following Cypher statement to remove the 
relationship FRIEND between them:

MATCH (f1:FEMALE {name: "Sheena"})-[r:FRIEND]-(f2:MALE  
{name:"Oliver"})
DELETE r;

Cypher query optimizations
In this section, we will talk about the various utilities, features, tips, and tricks 
available and provided by Neo4j to improve the performance of our Cypher queries.

Before moving forward, let's clean up our database once again and recreate our 
sample dataset.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 59 ]

Perform the following steps to clean up your Neo4j database:

1. Open your Linux console or shell and execute "<$NEO4J_HOME>/bin/neo4j-
shell".

2. Execute the following Cypher queries to delete the data from Neo4j database.
MATCH (n)-[r]-(n1) delete r,n.n1;
MATCH n delete n;

Next, recreate the sample dataset provided in the Pattern and pattern matching section 
of Chapter 2, Querying the Graph with Cypher.

Further in this section, we will refer to the data created by our sample dataset and 
will also explain the process of performance tuning/optimization.

Indexes
Neo4j 2.0 introduces an optional schema, based on the concepts of labels. You can 
define the constraints and indexes on the labels. This in turn helps in implementing 
data integrity checks and at the same time also helps in performance optimizations  
of the Cypher query.

We discussed the constraints in the previous section, Working with constraints. Let's 
move forward and see the usage and benefits of indexes.

Indexes in Neo4j are similar to the indexes defined in RDBMS. They help in 
improving the performance of node lookups. They are automatically updated with 
all the modifications done to the underlying data structure. Indexes in Neo4j are 
eventually available, that means that they are being populated in the background 
and are automatically used as soon as they are online and available to serve user 
requests. In case something goes wrong then indexes can be in failed state and we 
need to look at the errors and recreate/rebuild them.

Indexes are leveraged automatically by Cypher queries. Cypher provides a Query 
Planner/Optimizer, which evaluates a given Cypher query and makes all possible 
attempts to execute it in the shortest possible time by scanning the indexes.

Let's look at the process of creating indexes:

• The following Cypher statement creates an index on label MALE and  
property name:
CREATE INDEX ON :MALE(name);

www.it-ebooks.info

http://www.it-ebooks.info/


Mutating Graph with Cypher

[ 60 ]

• For listing the available indexes, execute the following command on your 
neo4j-shell:
Schema ls

• The following Cypher command can be used to delete the indexes:
DROP INDEX ON :MALE(name);

Once indexes are defined, they are automatically used whenever the indexed 
properties are defined in the WHERE clause of our Cypher queries for simple equality 
comparison or in conditions. However, there could be scenarios where we want to 
explicitly use a particular index in our Cypher queries and for that we can use the 
USING clause in our Cypher queries.

For example, execute the following Cypher query and define an index on label MALE 
(if not already created):

CREATE INDEX ON :MALE(name);

Check whether the index is successfully created and is ready to serve the request (it 
should be online):

schema ls

Once the index is successfully created, let's execute the next query that leverages the 
USING clause to explicitly state the index to be used while filtering the nodes:

MATCH (n:MALE)
USING INDEX n:MALE(name)
where n.name="Matthew"
return n;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 61 ]

The preceding screenshot shows the process and output of the explicitly stating 
indexes in the Cypher query.

We can also specify multiple USING clauses in a single query and provide index hints 
to Cypher Query Optimizer to use multiple indexes. We can also provide the hint to 
our Cypher Query Planner to scan all the labels first and then perform any further 
filtering. This could result in a good performance boost in case your query eliminates 
unnecessary data using labels itself.

For example, we can rewrite our previous query and provide hints to use SCAN:

MATCH (n:MALE)
USING SCAN n:MALE
where n.name="Matthew"
return n;

There would be no change in results but it could provide a performance boost in case 
the labels are carefully applied to the nodes.

Index sampling
The first step in executing any Cypher query is to come up with an efficient 
execution plan. This execution plan is created by Neo4j but before that it needs 
information about our database, indexes, number of nodes in indexes, relationships, 
and so on. All this information will assist Neo4j in coming up with an effective and 
efficient execution plan, which in turn will result in a faster response time for our 
queries. We will discuss execution plans in the next section, but one of the ways 
to help Neo4j in arriving at an effective execution plan is index sampling. Index 
sampling is the process where we analyze and sample our indexes from time to time, 
and keep the statistics of our indexes updated; these keep on changing as we add, 
delete, or modify data in the underlying database.

We can instruct Neo4j to automatically sample our indexes from time to time by 
enabling the following properties in <$NEO4J_HOME>/conf/neo4j.properties:

• index_background_sampling_enabled: This is a Boolean property that is by 
default set to False. We need to make it True for automatic sampling.

• index_sampling_update_percentage: It defines the percentage size of the 
index which needs to be modified before Neo4j triggers sampling.

www.it-ebooks.info

http://www.it-ebooks.info/


Mutating Graph with Cypher

[ 62 ]

We can also manually trigger the sampling from neo4j-console by using the 
schema command:

• schema sample -a: This will trigger the sampling of all the indexes
• schema sample –l MALE –p name: This will trigger the sampling on the 

index defined on label MALE and the property name

Append –f to the schema command to force the 
sampling of all or a specific index.

Understanding execution plans
Neo4j implements a cost based optimizer (CBO) that generates an execution plan 
for each and every query, and defines the exact process to be followed for producing 
the results of the provided Cypher query. We can analyze the execution plan by two 
different ways:

• EXPLAIN: If we want to see the execution plan of our Cypher query but do 
not want to execute it, then we can prefix our queries with the EXPLAIN 
keyword and it will show the execution plan of our Cypher query but will 
not produce any results

• PROFILE: If we want to execute our queries and also see the execution plan  
of our Cypher query, then we can prefix our queries with the PROFILE 
keyword and it will show the execution plan of our Cypher query along  
with the results

For example, let's understand the execution plan of the following query, which finds 
a person by the name Annie:

PROFILE MATCH(n) where n.name="Annie"
return n;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 63 ]

The preceding query will produce the following results:

Wow!!!! Lot of information but believe me it is helpful and easy too.

Let's understand the important aspects of the execution plan shown in the preceding 
illustration:

• Compiler CYPHER 2.2: This tells us the version of the compiler which is 
used to generate this explain plain.

• Planner COST: This tells us that Neo4j is using cost based optimizer and the 
next set of statements will show the execution plan of our query.

• Filter: This is the starting point and it signifies that the provided query will 
use a filter to produce the results.

• AllNodesScan: This is the second step within Filter and signifies that Cypher 
will be scanning all the nodes for generating the results. If you are familiar 
with Oracle then it is similar to Full Table Scan (FTS) shown in the explain 
plain of SQL.

Now let's understand the various columns of the table shown in the preceding 
screenshot:

• Operator: This shows the kind of operators used for the execution of the 
query. In the screenshot being discussed, it shows two operators—Filter and 
AllNodesScan. Depending on the given Cypher query, a different filter will 
be applied.

• EstimatedRows: This defines the estimated number of rows that need to be 
scanned by a particular filter.

• Rows: This defines the number of actual rows scanned by the filter.
• DbHits: This is the number of actual hits (or I/O) performed for producing 

the results by a particular filter.

www.it-ebooks.info

http://www.it-ebooks.info/


Mutating Graph with Cypher

[ 64 ]

• Identifiers: This refers to the identifiers defined and used for each filter.
• Other: It refers to any other information associated with the filters.

Easy, isn't it?

Let's move onto the next section and see how these plans can help us in improving 
the overall performance of our queries.

Analyzing and optimizing queries
In this section, we will talk about the step-by-step process for analyzing and 
optimizing Cypher queries with an appropriate example.

Let's continue with our example provided in the previous section, and further 
analyze and perform optimizations. The query in consideration is as follows:

PROFILE MATCH(n) where n.name="Annie"
return n;

As we have seen earlier, our query uses AllNodesScan which is not at all good to 
have in production systems. It will result in a very heavy operation where it will  
scan all the nodes, which means the complete database.

In order to optimize our query, let's first analyze our where clause where we are 
filtering by name="Annie". We know that Annie is a female and while creating the 
dataset we also tagged the node Annie with a label FEMALE.

So let's see if introducing a label in our query will optimize our query.

The modified query will be as follows:

PROFILE MATCH(n:FEMALE) where n.name="Annie"
return n;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 65 ]

The modified query has drastically improved the overall performance and time 
taken by the Cypher query.

The filters have changed and now it is using NodeByLabelScan, which is much better 
as it is now filtering upon labels and then by the property in the where clause. So, no 
more full scans.

The EstimatedRows, Rows, and DbHits values have significantly reduced and listed 
next are the new statistics:

• EstimatedRows: Earlier it was 1 and 9, and now it is 0 and 2
• Rows: Earlier it was 1 and 9, and now it is 1 and 2
• DbHits: Earlier it was 18 and 10, and now it is 4 and 3

Introducing a label has improved the overall throughput of our query by 50 percent. 
But still there is some more scope…

We discussed indexes in the previous sections, so now let's create an index on the 
label FEMALE and then run the same query again, without introducing any other 
criteria in the query. The output would be as follows:

Amazing!!!! Isn't it?

We have again improved the overall performance of the query by simply introducing 
an index over the label FEMALE.

Now the query filters are again changed and it is using NodeIndexSeek, which is 
further leveraging our newly created Indexes.

As a result, the total DbHits value has reduced to just 2 from 28 (18+10), which 
means that the total cost of the query has improved by 85 percent.

www.it-ebooks.info

http://www.it-ebooks.info/


Mutating Graph with Cypher

[ 66 ]

Though there is no golden rule for performance optimization, there could be many 
such scenarios where we can optimize our Cypher query by introducing the labels, 
indexes, or any additional information to help Neo4j filter the larger results early in 
the cycle, which in turn would reduce the overall cost of the query.

In this section, we have discussed various options and features provided by Neo4j 
for optimizing Cypher queries. We also discussed these by using appropriate 
examples and significantly improved the performance of our queries by introducing 
labels and indexes.

Summary
In this chapter, we have learned about the various ways of mutating (creating, 
updating, and deleting) nodes, labels, properties, and relationships in Neo4j.  
We also talked about the process of optimizing our Cypher queries using  
appropriate examples.

In the next chapter, we will discuss in detail Python and its integration with Neo4j 
using py2neo.

www.it-ebooks.info

http://www.it-ebooks.info/


[ 67 ]

Getting Python and Neo4j  
to Talk Py2neo

Python is a widely used general-purpose and high-level programming language. The 
power of Python comes from the fact that it provides a high level of abstraction to 
the programmers from the concepts such as memory management, portability, and 
so on, which are the core features of Python, resulting in a readable, maintainable, 
and cleaner code. It emphasizes the speed of development where the programmers 
can pick up basic Python skills in a short time frame, and also describes the concepts 
and ideas in fewer lines of code in comparison to other programming languages such 
as C++ or Java.

Python is interpreted where it uses a just-in-time (also known as JIT) compiler named 
PyPy (http://en.wikipedia.org/wiki/PyPy) and provides faster development 
cycles, along with ease of programming and debugging to the programmers.

Python is interpreted, interactive, object-oriented, and supports multiple 
programming paradigms such as imperative, functional, procedural, structured,  
and aspect-oriented programming.

It also provides a wide variety of standard libraries and extensions, which makes it 
much more powerful in comparison to other programming languages.

Py2neo is another extension and client library for Python, specifically developed to 
work with Neo4j. It fully supports Neo4j 2.x and provides a comprehensive toolkit for 
working with all the core concepts of Neo4j, such as nodes, relationships, properties, 
labels, indexes, MATCH, and so on. It does not have any external dependencies and can 
be used as a standalone package with the basic Python installation.

In this chapter, we will discuss integration of Python and Neo4j using py2neo.

www.it-ebooks.info

http://en.wikipedia.org/wiki/PyPy
http://www.it-ebooks.info/


Getting Python and Neo4j to Talk Py2neo

[ 68 ]

This chapter will cover the following topics:

• Installing and configuring py2neo
• Exploring py2neo APIs
• Creating a social network with py2neo
• Batch imports
• Unit testing

Installing and configuring py2neo
In this section, we will talk about installing and configuring py2neo and other 
resources required for quick development using APIs exposed by py2neo.

Py2neo is a simple, powerful, and pragmatic Python library that provides access to 
Neo4j via its RESTful Web service interface. It does not have external dependencies, 
and installation is simple and straightforward. The library is actively maintained 
on GitHub (https://github.com/nigelsmall/py2neo), regularly updated in the 
Python Package Index (PPI), and built uniquely for Neo4j in close association with 
its team and community.

Let's move forward and discuss the prerequisites and installation steps for py2neo.

Prerequisites
The following are the prerequisites required to install py2neo:

• Python: Python 3.4.x should be installed and configured. Perform the 
following steps in case you do not have Python installed:

1. Depending upon your OS, download and install Python from 
https://www.python.org/downloads/.

2. Update the "PATH" environment variable and append "/usr/local/
bin/python" in Unix/Linux and <$PYTHON_HOME>/Scripts in 
Windows, where "$PYTHON_HOME" is the path of the root directory 
where Python is installed.

www.it-ebooks.info

https://github.com/nigelsmall/py2neo
https://www.python.org/downloads/
http://www.it-ebooks.info/


Chapter 4

[ 69 ]

3. Open your console in Windows (or shell in Linux/Unix), type 
python, and you will see something like the following screenshot:

• Integrated Development Environment (IDE): Install and configure your 
favorite IDE such as Eclipse (with PyDev plugin), PythonWin, or IDLE to 
write and execute Python scripts.

Going forward in this chapter, we will use Eclipse Luna (integrated with PyDev 
plugin) and Windows as OS for all the given examples for Python and py2neo.

Installing py2neo
If you are familiar with Python, then you must be aware of PIP.

For those who are new to PIP, it is a packaging manager and installer for various 
external and third-party Python packages/components that are maintained and 
packaged by Python Packaging Authority (PYPA).

PIP is a recommended utility for installing all Python packages, and is more or 
less a standard now for developers to be used for managing (installing, removing, 
upgrading, and so on) all Python third-party components/packages.

PIP as an executable is already included and installed with Python 3.x. So our Python 
installation already contains PIP.

For more information on PIP, refer to https://pip.pypa.io/en/latest/index.
html.

It is very easy to install py2neo using PIP. Ensure that your system is connected to 
the Internet and then execute the following command on your command prompt; 
everything else will be handled by PIP itself:

pip install py2neo

Once this command is successfully completed, execute the following command to 
see the list of packages installed by PIP:

pip list

www.it-ebooks.info

https://pip.pypa.io/en/latest/index.html
https://pip.pypa.io/en/latest/index.html
http://www.it-ebooks.info/


Getting Python and Neo4j to Talk Py2neo

[ 70 ]

You will see the result as shown in the following screenshot:

The preceding illustration shows the output of the py2neo installation using PIP,  
and then the list of installed packages along with their versions.

Exploring the py2neo APIs
Py2neo provides various features and exposes a number of APIs to work with Neo4j. 
Let's discuss a few of the important APIs that we will use along with the examples in 
the upcoming sections.

Graph
Graph is one of the basic APIs and contains all the basic operations related to the 
graph database. It is a wrapper around the REST API ( http://docs.neo4j.org/
chunked/stable/rest-api.html), exposed by Neo4j. It connects to the base URI of 
Neo4j, and then further discovers other REST endpoints exposed by Neo4j. Graph 
can be used to connect to the local or remote Neo4j server. It can also connect the 
Neo4j server running behind the firewall by providing the username in the URL 
itself. The following are the code snippets for using the Graph API and connecting  
to the Neo4j server:

• Connecting to the local Neo4j server:
graph = Graph("http://localhost:7474/db/data/")

• Connecting to the remote Neo4j server:
graph = Graph("http://<Domain_Name>:<PORT>/db/data/")

www.it-ebooks.info

http://docs.neo4j.org/chunked/stable/rest-api.html
http://docs.neo4j.org/chunked/stable/rest-api.html
http://www.it-ebooks.info/


Chapter 4

[ 71 ]

• Connecting to the Neo4j server behind the Firewall that requires HTTP 
authentication:
graph =  
Graph("http://<username>:<password>@<Domain_Name>:<PORT>/db  
/data/")

Apart from the preceding methods, it also exposes various other methods for 
creating/merging nodes and relationships, searching nodes, executing raw Cypher 
queries, and many more. We will look at all these methods in the upcoming sections.

Refer to http://py2neo.org/2.0/essentials.html#the-graph for the complete 
list of methods exposed by the Graph API.

Authentication
Neo4j 2.2.x introduces the optional username-password authentication mechanism 
for the REST APIs. It is enabled by default but can be disabled by modifying the 
property "dbms.security.auth_enabled" to false in <$NEO4J_HOME>/conf/
neo4j.properties. The following are the two ways to authenticate the user before 
executing any rest APIs:

• Set the system environment variable NEO4J_AUTH=<username>:<password>, 
which will be automatically used by the REST APIs to authenticate the user

• Execute the Py2neo.authentication request with the username and 
password and authenticate the user

The following is the code snippet for authenticating the REST APIs using Py2neo.
authentication:

import py2neo
from py2neo import Graph

if __name__ == '__main__':
    #First parameter is the URL, second is the username and third  
is the password

    py2neo.authenticate("localhost:7474", "neo4j", "sumit")
    graph = Graph("http://localhost:7474/db/data/")

Py2neo also provides a command line utility neoauth, which can be used to either 
change the password or check whether there is any need to change the password 
(needed for new installations).

www.it-ebooks.info

http://py2neo.org/2.0/essentials.html#the-graph
http://www.it-ebooks.info/


Getting Python and Neo4j to Talk Py2neo

[ 72 ]

Execute the following command on your console for changing the password:

neoauth <username> <current-password> <new-password>

Execute the following command to check whether there is a need to change  
the password:

neoauth <username> <current-password/ default password>

Refer to Chapter 1, Your First Query with Neo4j, section for more 
details on authentication for REST APIs.

Node
The Node class is more or less a wrapper class for Neo4j nodes, where we can define 
labels and properties for a node and also define utility methods for searching the 
nodes connected to the given node. It also provides features to work with Python 
collections for creating nodes.

Here is code snippet for creating nodes with properties and labels:

import py2neo

from py2neo import Graph, Node

def creatNodeWithLabelProperties():
    print("Start - Creating Node with Label and Properties")
    # Authenticate the user using py2neo.authentication.
    # Ensure that you change the password 'sumit' as per your  
database configuration.
    py2neo.authenticate("localhost:7474", "neo4j", "sumit")

    # Connect to Graph and get the instance of Graph
    graph = Graph("http://localhost:7474/db/data/")

    # Create Nodes, where all positional arguments to constructor  
is Label.
    # And rest (keyword arguments) are Node Properties.
    #Below is a Node with 1 Label and 2 properties
    node1 = Node("FirstLabel", name="MyPythonNode1", neo4j_
version="2.2")

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 73 ]

    #Below is a Node with 2 Label and 2 properties
    node2 = Node("FirstLabel", "SecondLabel",name="MyPythonNode2",  
neo4j_version="2.2")

    #Now Use object of graph to create Node, the return type is a  
python tuple
    #Multiple Nodes can be created in a single Graph command
    resultNodes = graph.create(node1, node2)
    #Iterate Over Tuple and print all the values in the Tuple
    for index in range(len(resultNodes)):
        print("Created Node - ", index, ", ", resultNodes[index])
    print("End - Creating Node with Label and Properties")

if __name__ == '__main__':
    print("Start Creating Nodes")
    creatNodeWithLabelProperties()
    print("End Creating Nodes")

The preceding piece of code creates two nodes and in the end also prints the nodes 
on the console, which are then created in the Neo4j server/database.

Perform the following steps to execute the code we just saw:

1. In case your Neo4j server is not started, open the console or command 
prompt and execute <$NEO4J_HOME>\bin\neo4j. This will start your Neo4j 
server.

2. Create a new file named CreateNode.py and copy the preceding code into 
that file.

3. Next, define the __main__ method and invoke this new method.
4. Save CreateNode.py, and execute "python CreateNode.py" on 

your command prompt or console from the location where you saved 
CreateNode.py.

And you are done !!!

You will see print messages, as defined in the above code, on the console. This is 
shown in the following illustration:

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Python and Neo4j to Talk Py2neo

[ 74 ]

The previous illustration shows the results of CreateNode.py.

In order to understand the preceding code, follow the comments 
provided before every line of the code. The same is followed for 
every code example.

The Node class also provides the cast() method, which can be used to create the 
instance of the Node class from other Python data types such as dictionary. We can 
create a node by providing a list of labels and dictionary.

Let's define one more method, that is createNodeWithLabelPropertiesWithCast, 
in the CreateNode.py file and invoke it from the __main__ method. The content of 
this new method will be as follows:

def createNodeWithLabelPropertiesWithCast():
    print("Start - Creating Node with Label and Properties")
    # Authenticate the user using py2neo.authentication
    # Ensure that you change the password 'sumit' as per your 
      database configuration.
    py2neo.authenticate("localhost:7474", "neo4j", "sumit")
    # Connect to Graph and get the instance of Graph
    graph = Graph("http://localhost:7474/db/data/")
    #Define a LIST of Labels
    labels = [ 'FirstLabel' ,'SecondLabel' ]

    #Define a DICTIONARY
    properties = {'name':'MyPythonNode2', 'neo4j_version':'2.2'}
    #CAST the node and invoke graph.create method.
    node = Node.cast(labels,properties)
    resultNode, = graph.create(node)
    print("Node - ", resultNode)
    print("End - Creating Node with Label and Properties")

The preceding method defines a list labels and dictionary properties datatypes 
and then leverages the cast() method to create a node.

We can also add or delete labels of a node by using node.labels.
add(<NewLabelName>) or node.labels.delete(<LabelName>), where node is the 
reference to the Node object that was created and labels is the method of the Node 
class. Finally, replace the text within the <…> with your new or existing label and call 
node.push() for publishing the changes from client to the server. We can also use 
node.pull() for pulling updates from the server to client.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 75 ]

Similar to nodes, we can also perform updates to properties by using  
node.properties["<Name of Property>"] = "<New Value>" and then  
invoking node.push() again for pushing updates to the server.

The Node class also defines a few more utility methods for searching the nodes 
related to the given nodes. These are as follows:

• match: Returns the iterator of all relationships attached to the given node
• match_incoming: Returns the iterator of all incoming relationships attached 

to the given node
• match_outgoing: Returns the iterator of all outgoing relationships attached 

to the given node

Refer to http://py2neo.org/2.0/essentials.html#nodes for the complete list of 
methods and their associated signatures/arguments exposed by the Node API.

Relationship
The Relationship class is more or less a wrapper class for Neo4j relationships, where 
we can define the relationship between two given nodes. It also defines the utility 
methods for searching the nodes connected to the given node, and provides features 
to define the properties of a given relationship.

The following is a code snippet for creating a relationship between three given nodes 
along with the properties for the given relationship:

import py2neo
from py2neo import Graph, Node, Relationship, Rev

def createRelationshipWithProperties():
    print("Start - Creating Relationships")
    # Authenticate the user using py2neo.authentication
    # Ensure that you change the password 'sumit' as per your  
database configuration.
    py2neo.authenticate("localhost:7474", "neo4j", "sumit")
    # Connect to Graph and get the instance of Graph
    graph = Graph("http://localhost:7474/db/data/")
    # Create Node with Properties
    amy = Node("FEMALE", name="Amy")
    # Create one more Node with Properties
    kristine = Node("FEMALE",name="Kristine")
    # Create one more Node with Properties
    sheryl = Node("FEMALE",name="Sheryl")

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Python and Neo4j to Talk Py2neo

[ 76 ]

    #Define an Object of relationship which depicts the relationship 
between Amy and Kristine
    #We have also defined the properties of the relationship -  
"since=2005"
    #By Default the direction of relationships is left to right,  
i.e. the -->
    kristine_amy = Relationship(kristine,"FRIEND",amy,since=2005)

    #This relationship is exactly same as the earlier one but here  
we are using "Rev"
    #"py2neo.Rev = It is used to define the reverse relationship  
(<--) between given nodes
    amy_sheryl=Relationship(amy,Rev("FRIEND"),sheryl,since=2001)

    #Finally use graph Object and Create Nodes and Relationship
    #When we create Relationship between, then Nodes are also  
created.
    resultNodes = graph.create(kristine_amy,amy_sheryl)
    #Print the results (relationships)
    print("Relationship Created - ",resultNodes)
if __name__ == '__main__':
    createRelationshipWithProperties()

This preceding piece of code creates three nodes—Amy, Kristine, and Sheryl, and 
defines the relationship between all these three nodes.

Perform the following steps to execute the code being discussed:

1. In case your Neo4j server is not started, open the console or command 
prompt and execute <$NEO4J_HOME>\bin\neo4j. This will start your  
Neo4j server.

2. Create a new file named CreateRelationship.py, save it, and execute 
"python CreateRelationship.py" on your command prompt or console 
from the location where you saved CreateRelationship.py.

And you are done!!!

You will see the print messages as defined in the previous code on the console.

Similar to nodes, relationship also defines the cast() method, which can create 
properties from the dictionary datatype.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 77 ]

Properties for a given relationship can be further read or modified using its index. 
For example, let's assume that we need to change the value of the property "since" 
to 2009 in the previous piece of code. This can be done using the following syntax:

    kristine_amy["since"]=2009

You can also do it using the following syntax:

    kristine_amy.properties["since"]=2009

Then finally invoke push() to send the modifications to the server:

    kristine_amy.push()

Refer to http://py2neo.org/2.0/essentials.html#relationships for the 
complete list of methods exposed by the Relationship API.

Cypher
Py2neo provides a service wrapper for executing Cypher queries. The service 
wrapper also provides access to transactions and facilitates executing a single 
Cypher statement or streaming. The Cypher class is instantiated using the  
py2neo.Graph object and is available through the py2neo.Graph.cypher attribute.

There are multiple methods defined by the Cypher class. The following are a few of 
the common ones:

• py2neo.Graph.cypher.execute(…): This method executes a single 
Cypher query and returns a list of records wrapped in the py2neo.cypher.
RecordList object. Another variation of the execute() method is execute_
one(), which returns the value from the first column of the first record 
fetched from the database.

• py2neo.Graph.cypher.stream(…): This method executes a single Cypher 
query and returns a result iterator. This method is different from others, as 
it incrementally handles the results of Cypher queries and batch requests 
as well as the results from a few other functions, such as match. In short, it 
provides access to HTTP Stream and we can iterate and fetch records one by 
one, which is unlike the other methods where we fetch the full result object.

• py2neo.Graph.cypher.run(…): It executes a single Cypher query and does 
not return anything.

Let's explore a few examples using the methods we just discussed.

Shown next is the code snippet for executing Cypher queries using the  
execute() method.

www.it-ebooks.info

http://py2neo.org/2.0/essentials.html#relationships
http://www.it-ebooks.info/


Getting Python and Neo4j to Talk Py2neo

[ 78 ]

For brevity, we have moved the common piece of code for connecting graphs in a 
different method that would look something like the following:

import py2neo
from py2neo import Graph
def connectGraph():
    # Authenticate the user using py2neo.authentication
    # Ensure that you change the password 'sumit' as per your  
database configuration.
    py2neo.authenticate("localhost:7474", "neo4j", "sumit")
    # Connect to Graph and get the instance of Graph
    graph = Graph("http://localhost:7474/db/data/")
    return graph

Now let's define another method, executeSimpleCypherQuery(), which will 
contain the following piece of code:

def executeSimpleCypherQuery():
    print("Start - execution of Simple Cypher Query")
    #Connect to Graph
    graph=connectGraph()
    #define and Execute a Cypher query which fetches all nodes  
from the database.
    #object of 'cypher' is returned by 'graph' Object and then  
further we use execute method Usually
    results = graph.cypher.execute("MATCH (n) return n.name as  
name, labels(n) as labels")
    #Iterating ovver records and then printing the results.
    for index in range(len(results)):
        record = results[index]
        print("Printing Record = ",index," - Name =  
",record.name,", Labels = ",record.labels)
    print("End - execution of Simple Cypher Query")

The preceding piece of code fetches all the nodes from the database and prints their 
label and property(name) on the console.

Perform the following steps to execute the code being discussed:

1. In case your Neo4j server is not started, open the console or command 
prompt and execute <$NEO4J_HOME>\bin\neo4j. This will start your  
neo4j server.

2. Create a new file by name of ExecuteCypher.py and copy the 
above code for both the methods, that is connectGraph and 
executeSimpleCypherQuery() in that file.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 79 ]

3. Next, define __main__ method and invoke executeSimpleCypherQuery().
4. Save ExecuteCypher.py and execute python ExecuteCypher.py on 

your command prompt or console from the location where you saved 
ExecuteCypher.py.

And we are done!!!

You will see the print messages as defined in the preceding code on the console.

Following is the code snippet for using the cypher.stream() method for the same 
Cypher query that we executed in the executeSimpleCypherQuery() method:

def executeStreamingCypherQuery():

    print("Start - execution of Streaming Cypher Query")
    #Connect to Graph
    graph=connectGraph()
    #Call to cyhper.stream method which returns cypher.RecordStream 
Object
    results = graph.cypher.stream("MATCH (n) return n.name as  
name, labels(n) as labels")
    #Iterating over the RecordStream Object and print the results
    for recordStream in results:
        print("Printing Record - Name = ",recordStream.name,",  
Labels = ",recordStream.labels)

    print("End - execution of Streaming Cypher Query")

The preceding piece of code also produces the same output as 
executeSimpleCypherQuery(). However, fundamentally it is different as it 
provides a stream of results rather than the complete result set in one single call.

Perform the following steps to execute the code being discussed:

1. In case your Neo4j server is not started, open the console or command 
prompt and execute <$NEO4J_HOME>\bin\neo4j. This will start your  
Neo4j server.

2. Add this new executeStreamingCypherQuery() method just below 
executeSimpleCypherQuery() in ExecuteCypher.py.

3. Next, invoke this method from the __main__ method.
4. Save ExecuteCypher.py and execute python ExecuteCypher.py on 

your command prompt or console from the location where you saved 
ExecuteCypher.py.

You will see the print messages as defined in the preceding code on the console.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Python and Neo4j to Talk Py2neo

[ 80 ]

Transactions
Cypher also provides support for transactions where you can execute multiple 
Cypher statements as a one unit of work, so that if something fails, you can rollback 
all previous statements and your database remains in a consistent state.

The following are a few of the common methods exposed by the py2neo.cypher.
CypherTransaction class:

• begin(): Starts a transaction and returns the object of py2neo.cypher.
CypherTransaction.

• append(): Appends the Cypher queries to the existing transactions.
• commit(): Sends all the Cypher queries in a transaction to the server and 

marks the transaction as completed.
• rollback(): Rollbacks all the changes within the current transaction.
• process(): Intermittently sends few transactions to the server and leaves 

the transaction open for further statements. It can be used to form a process 
where we can process multiple transactions in batches.

Following is the code snippet for using transactions for Cypher statements:

def executeCypherQueryInTransaction():
    print("Start - execution of Cypher Query in Transaction")
    #Connect to Graph
    graph=connectGraph()
    #begin a transaction
    tx = graph.cypher.begin()
    #Add statements to the transaction
    tx.append("CREATE (n:Node1{name:'John'}) RETURN n")
    tx.append("CREATE (n:Node1{name:'Russell'}) RETURN n")
    tx.append("CREATE (n:Node1{name:'Smith'}) RETURN n")
    #Finally commit the transaction and get results
    results = tx.commit()
    #Iterate over results and print the results
    for result in results:
        for record in result:
            print(record.n)
    print("End - execution of Cypher Query in Transaction")

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 81 ]

Perform the following steps to execute the code being discussed:

1. In case your Neo4j server is not started, open the console or command 
prompt and execute <$NEO4J_HOME>\bin\neo4j. This will start your  
Neo4j server.

2. Add this new executeCypherQueryInTransaction() method just below 
executeStreamingCypherQuery() in ExecuteCypher.py.

3. Next, invoke this method from the __main__ method.
4. Save ExecuteCypher.py and execute "python CreateNode.py" on your 

command prompt or console.

You will see the print messages as defined in the preceding code on the console.

Refer to http://py2neo.org/2.0/cypher.html for the complete list of methods 
exposed by Cypher API.

Paths
py2neo.Path works on relationships defined between the nodes. It provides the 
flexibility to create relationships between nodes that may be optionally bound to 
remote counterparts in a Neo4j database.

Apart from the common methods such as push(), pull(), bound(), and unbind(), 
Path defines a few new methods:

• append(..): It is used to form a new path by connecting a new path or entity 
to the end of the existing path

• preappend(..): It is used to form a new path by connecting a new path or 
entity to the beginning of the existing path

• relationships(..): It is used to refer to a tuple of all the relationships in 
the given path

• nodes(..): It is used to refer to a tuple of all the nodes in the given path

The following is an example that shows the usage of Path in creating relationships:

def createPaths():
    #Connect to Neo4j Database
    graph = connectGraph()
    #Let us define few Nodes
    bradley,matthew,lisa = Node(name="Bradley"),Node(name="Matthew"), 
Node(name="Lisa")
    #Connect these Node and form a Path
    path_1 = Path(bradley,"Knows",matthew,Rev("Knows"),lisa)

www.it-ebooks.info

http://py2neo.org/2.0/cypher.html
http://www.it-ebooks.info/


Getting Python and Neo4j to Talk Py2neo

[ 82 ]

    #Let us create this Path on the server
    graph.create(path_1)
    #Let us create some more Nodes
    john, annie, ripley = Node(name="John"), Node(name="Annie"),  
Node(name="Ripley")
    #Define another Path for these New Nodes
    path_2 = Path(john,"Knows",annie,"Knows",ripley)
    #Now, we will join path_1 and path_2 using function append(),  
and it will give us a new path
    path_3 = path_1.append("Knows",path_2)
    #Let us Create this new path in the server
    resultPath = graph.create(path_3)

    #Now we will print and see the results on the Console
    print("Print Raw Data")
    print("Nodes in the Path-1 = ",resultPath[0].nodes)
    print("Relationships in the Path-1 = ",resultPath[0].
relationships)

    print("Print - All Relationships")
    for rels in resultPath[0].relationships:
        print(rels)

if __name__ == '__main__':
    createPaths()

Perform the following steps to execute the code being discussed:

1. In case your Neo4j server is not started, open the console or command 
prompt and execute <$NEO4J_HOME>\bin\neo4j. This will start your  
Neo4j server.

2. Create a new file ExplorePaths.py and copy the preceding code into  
that file.

3. Define the connectGraph() method in ExplorePaths.py just above 
createPaths() which connects to the server and returns the object of graph. 
Alternatively, you can also copy this method from previous examples.

4. Save ExplorePaths.py and execute "python ExplorePaths.py" on 
your command prompt or console from the location where you saved 
ExplorePaths.py.

You will see the print messages as defined in the above code on the console.

Refer to http://py2neo.org/2.0/essentials.html#paths for the complete list of 
methods exposed by the Path API.

www.it-ebooks.info

http://py2neo.org/2.0/essentials.html#paths
http://www.it-ebooks.info/


Chapter 4

[ 83 ]

In this section, we discussed about the important APIs of py2neo that are used to 
interact with the Neo4j database. Let's move forward; in the next section we will 
create the social network data using these APIs.

Creating a social network with py2neo
In the previous section, we saw the important APIs exposed by py2neo along with 
examples for each of them. In this section, we will further use these APIs and see 
their practical implementations in real-world scenarios.

Let's recreate the social network data which we created using Cypher in Chapter 2, 
Querying the Graph with Cypher, using various APIs and methods exposed by py2neo.

First and foremost, we will clean up our database, so perform the following steps to 
do that:

1. Open your console or command prompt and execute <$NEO4J_HOME>\bin\
neo4jshell.

2. Execute the following Cypher queries to delete the data from Neo4j database:
OPTIONAL MATCH (n)-[r]-(n1) delete r,n.n1;
MATCH n delete n;

Next we need to write some Python and code using py2neo to create a graph, which 
will look something like the following figure:

The previous illustration shows the layout of the data model which we will be 
creating using py2neo APIs.

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Python and Neo4j to Talk Py2neo

[ 84 ]

Perform the following steps to create the social network data using py2neo:

1. Create a Python class and name it CreateSocialNetworkData.py.
2. Next, edit CreateSocialNetworkData.py and define the following 

functions:
 ° connectGraph: This will contain the code for connecting the server 

and returning the object of the graph, which is similar to what we 
created/used in previous examples.

 ° createPople: This will contain the code for creating the people in 
our social network data using Node API of py2neo, and will return 
the object of dictionary with all the People nodes:
def createPeople(self,graph):
        print("Creating People")
        bradley = Node('MALE','TEACHER',name='Bradley',  
surname='Green', age=24, country='US')
        matthew = Node('MALE','STUDENT',name='Matthew',  
surname='Cooper', age=36, country='US')
        lisa = Node('FEMALE',name='Lisa', surname='Adams',  
age=15, country='Canada')
        john = Node('MALE',name='John', surname='Godman',  
age=24, country='Mexico')
        annie = Node('FEMALE',name='Annie', surname='Behr',  
age=25, country='Canada')
        ripley = Node('MALE',name='Ripley',  
surname='Aniston', country='US')
        graph.create(bradley,matthew,lisa,john,annie,ripley)
        print("People Created")
        #Create a Dictionary and return back the nodes for  
further operations
        people =  
{'bradley':bradley,'matthew':matthew,'lisa':lisa,'john':john
,'annie':annie,'ripley':ripley}
        return people

 ° createFriends(..): It will contain the code for creating 
relationships between the people we created in createPople() using 
the Path API of py2neo, and will further return all the paths created 
between people:
    def createFriends(self,graph,people):
        print("Creating Relationships between People")

        path_1 =  
Path(people['bradley'],'FRIEND',people['matthew'],'FRIEND',p
eople['lisa'],'FRIEND',people['john'])

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 85 ]

        path_2 = path_1.prepend(people['lisa'],Rev('FRIE
ND'))
        path_3 =  
Path(people['annie'],'FRIEND',people['ripley'],'FRIEND',peo
ple['lisa'])
        path_4 =  
Path(people['bradley'],'TEACHES',people['matthew'])
        friendsPath = graph.create(path_2,path_3,path_4)
        print("Finished Creating Relationships between 
People")
  return friendsPath

 ° createMovies(..): This function is similar to createPople; the only 
difference is that it will create the movies and will return the object of 
dictionary with all the Movie nodes:
    def createMovies(self,graph):
        print("Creating Movies")
        firstBlood = Node('MOVIE',name='First Blood')
        avengers = Node('MOVIE',name='Avengers')
        matrix = Node('MOVIE',name='matrix')
        graph.create(firstBlood,avengers,matrix)
        print("Movies Created")
        movies =  
{'firstBlood':firstBlood,'avengers':avengers,'matrix':matr
ix}
        return movies

 ° rateMovies(..): This function is similar to createFriends; the only 
difference is that it will create the relationship between the People 
and Movies nodes using the HAS_RATED relationship. It will use the 
Relationship API of py2neo to create the relationship:
    def rateMovies(self,graph,movies,people):
        print("Start Rating the Movies")

        matthew_firstBlood =  
Relationship(people['matthew'],'HAS_RATED',movies['firstBloo
d'],ratings=4)
        john_firstBlood =  
Relationship(people['john'],'HAS_RATED',movies['firstBlood'
],ratings=4)
        annie_firstBlood =  
Relationship(people['annie'],'HAS_RATED',movies['firstBlood
'],ratings=4)
        ripley_firstBlood =  
Relationship(people['ripley'],'HAS_RATED',movies['firstBlood
'],ratings=4)

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Python and Neo4j to Talk Py2neo

[ 86 ]

        lisa_avengers =  
Relationship(people['lisa'],'HAS_RATED',movies['avengers'],
ratings=5)
        matthew_avengers =  
Relationship(people['matthew'],'HAS_RATED',movies['avengers
'],ratings=4)
        annie_avengers =  
Relationship(people['annie'],'HAS_RATED',movies['avengers']
,ratings=3)
        moviesPath =  
graph.create(matthew_firstBlood,john_firstBlood,annie_
firstBlood,ripley_firstBlood,lisa_avengers,matthew_
avengers,annie_avengers)
        print("Finished Rating the Movies")
        return moviesPath

3. Now, we will define a __main__ method, create an object of class 
CreateSocialNetworkData, and invoke all the previous methods  
in the same sequence as they are defined.

4. Next, save CreateSocialNetworkData.py and execute Python 
CreateSocialNetworkData.py on your command prompt or console  
from the location where you saved CreateSocialNetworkData.py.

And we are done!!!

You will see the same graph in your Neo4j database that we created in Chapter 2, 
Querying the Graph with Cypher, using Cypher.

Batch imports
Py2neo.batch provides the Batch API, which is a wrapper around the Neo4j REST 
Batch API (http://neo4j.com/docs/stable/rest-api-batch-ops.html).

The Batch API in py2neo or in Neo4j is designed to wrap multiple and varied types 
of read, write, update, and delete REST requests in a single transaction. Though it 
seems to be a good choice to use batch operations, it is not recommended for new 
use cases that are built for Neo4j 2.0+. For example, schemas, and labels are not 
supported by the Batch API.

Neo4j 2.0 introduces a new Cypher HTTP Transactional endpoint that executes 
multiple Cypher statements into a single request and that too in a transaction 
(http://neo4j.com/docs/milestone/rest-api-transactional.html). It is 
strongly recommended to use this new API for all use cases developed on Neo4j 2.0 
and above. We have seen an example of this while we were discussing the Cypher 
API in the Exploring py2neo APIs section.

www.it-ebooks.info

http://neo4j.com/docs/stable/rest-api-batch-ops.html
http://neo4j.com/docs/milestone/rest-api-transactional.html
http://www.it-ebooks.info/


Chapter 4

[ 87 ]

The following is the code snippet for working with the Batch API:

    def createAndExecuteBatchRequest(self):
        # Authenticate the user using py2neo.authentication
        # Ensure that you change the password 'sumit' as per your  
database configuration.
        py2neo.authenticate("localhost:7474", "neo4j", "sumit")
        # Connect to Graph and get the instance of Graph
        graph = Graph("http://localhost:7474/db/data/")

        #Get the instance of Write Batch request
        batch = WriteBatch(graph)
        #Create a Node
        daisy = Node(name='Daisy')
        # Now invoke create method on batch. It also shows  
another way of creating the Node
        batch.create({'name':'Hana'})
        batch.create(daisy)
        #Create a relationships between the Nodes
        batch.create((0,Rev('KNOWS'),1))
        #Finally submit the Nodes
        batch.submit()

The preceding piece of code creates two nodes and then further creates the 
relationship between those two nodes.

Refer to http://py2neo.org/2.0/batch.html for the complete list of classes and 
methods exposed by the Batch API.

Perform the following steps to execute the code being discussed:

1. In case your Neo4j server is not started, open the console or command 
prompt and execute <$NEO4J_HOME>\bin\neo4j. This will start your  
Neo4j server.

2. Create a new class ExploreBatch.py and add the preceding piece of code 
just below the constructor.

3. Next, invoke this new method from the __main__ method.
4. Save ExploreBatch.py and run this class by executing "python 

ExecuteCypher.py" on the command prompt or console.

In this section, we discussed about the Batch API provided by py2neo for executing 
multiple requests into a single, transactional Batch request. Let's move forward 
towards the next section and discuss unit testing of our newly created data model.

www.it-ebooks.info

http://py2neo.org/2.0/batch.html
http://www.it-ebooks.info/


Getting Python and Neo4j to Talk Py2neo

[ 88 ]

Unit testing
One of the core objectives of Python is to bring in speed of development where 
developers can implement functional requirements in the shortest possible time 
and with fewer lines of code, which is in sync and embraces popular development 
models such as Agile (http://en.wikipedia.org/wiki/Agile_software_
development) or Extreme Programming (http://en.wikipedia.org/wiki/
Extreme_programming).

But at the same time it is also important to ensure that adding new code does not 
break the integrity of the system. This is only possible with an efficient/effective  
set of automated unit test cases.

Unit testing is an important aspect of any development lifecycle. It not only 
involves testing the expected outcome but at the same time it also tests unexpected 
conditions/scenarios and the behavior of the system.

Unit tests are an integral part of any test strategy. They are intended to break the 
entire codebase into several pieces and ensure that each piece or unit of work is 
producing the expected results. A good test suite is also used later as a regression 
test suite in the development cycle.

Even in some development models such as Test Drive Development (TDD) 
(http://en.wikipedia.org/wiki/Test-driven_development), it is advised to 
write a failing automated test case that defines a desired functionality or outcome, 
then further produces the minimum amount of code to pass that test, and in the  
end refactors the new code to the acceptable standards.

Neo4j or graph data models perfectly fit into this scenario as these models are 
evolving and are developed over a period of time. The code that supports these 
evolving models is highly agile and is constantly changing, so naturally it becomes 
imperative to write effective and efficient unit test suites.

Python comes with a unit testing framework, popularly known as PyUnit, that  
is a Python version of Junit (http://junit.org/). Junit is for Java and PyUnit is  
for Python.

Let's move forward and discuss the process of creating unit tests for our social 
network data.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Test-driven_development
http://junit.org/
http://www.it-ebooks.info/


Chapter 4

[ 89 ]

Perform the following steps to create a unit test that verifies that nodes are created 
and are available on the server:

1. Create a package by the name of test and within this package create a file 
named TestSocialNetworkData.py.

2. Next, edit TestSocialNetworkData.py and add the TestingGraph 
class, which extends unittest.TestCase. This class will define the 
testServerConnection() method, which will test the connection  
with the Neo4j server and looks like the following:
import unittest

from CreateSocialNetworkData import *

class TestingGraph(unittest.TestCase):

    def testServerConnection (self):
        graph = CreateSocialNetworkData.connectGraph(self)
        #Check whether Graph Object is created and bound to  
the remote entities
        self.assertTrue (graph.bound)

In the preceding test method we are invoking the connectGraph() 
method of the class CreateSocialNetworkData and then using assertions 
(assertTrue) to check that the graph is bounded to the remote entities, 
residing in the Neo4j server/database.

3. Next, edit TestSocialNetworkData.py and add the class TestingNodes 
which extends unittest.TestCase. This class will define two methods—
testLabelCount() and testIndividualNodes(). The testLabelCount() 
method will test the count of total unique labels attached to all the 
nodes, which should be equivalent to the count of the expected labels, 
and testIndividualNodes() will check whether the individual nodes 
in the server are equivalent to the expected nodes created by our 
CreateSocialNetworkData class. The following is the code snippet  
for the TestingNodes class:
class TestingNodes(unittest.TestCase):
    def setUp(self):
        py2neo.authenticate("localhost:7474", "neo4j",  
"sumit")
        # Connect to Graph and get the instance of Graph
        graph = Graph("http://localhost:7474/db/data/")
        self.graph = graph

www.it-ebooks.info

http://www.it-ebooks.info/


Getting Python and Neo4j to Talk Py2neo

[ 90 ]

    def tearDown(self):
        self.graph.unbind()

    def testLabelCount(self):
        results = self.graph.cypher.execute("MATCH (n)  
return count(DISTINCT labels(n)) as countLabel")
        #We should have only 5 Labels "FEMALE(2) MALE(4)  
MOVIE(3) STUDENT(1) TEACHER(1)"
        self.assertEqual(5, results[0].countLabel)

    def testIndividualNodes(self):
        #Define a Node which we need to check
        bradley = Node('MALE','TEACHER',name='Bradley',  
surname='Green', age=24, country='US')
        #Now get the Node from server
        results = self.graph.cypher.execute("MATCH (n)  
where n.name='Bradley' return n as bradley")
        #Both Nodes should be equal
        self.assertEqual(results[0].bradley,bradley)

4. Next we will test the paths (relationships). Edit TestSocialNetworkData.py  
and add the TestingPaths class which extends unittest.TestCase. Apart 
from the setUp() and tearDown() methods, which remain the same as we 
created in class TestingNode, this class will define two new methods—
testPathFRIENDExists and testPathTEACHESExists(). Both these will 
check the existence of relationship between the nodes in Neo4j server/
database, which was created by our CreateSocialNetworkData class.  
The following is the code snippet for these two new methods:
    def testPathFRIENDExists(self):
        #Query whether there are Nodes linked with  
Relationship - FRIEND
        results = self.graph.cypher.execute("MATCH  
(n{name:'Bradley'})-[r:FRIEND]->(n1{name:'Matthew'}) return  
count(r) as countPath")
        #Ensure that count=1. Not more, neither less
        self.assertEqual(1,results[0].countPath)

    def testPathTEACHESFRIENDExists(self):
        #Query whether there are Nodes linked with  
Relationship - TEACHES
        results = self.graph.cypher.execute("MATCH  
(n{name:'Bradley'})-[r:TEACHES]->(n1{name:'Matthew'})  
return count(r) as countPath")
        #Ensure that count=1. Not more, neither less
        self.assertEqual(1,results[0].countPath)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 91 ]

5. Now, to execute these test cases, we will define a test suite that will execute 
all the test cases of our social network data in one go. Create a new Python 
module outside the test package, name it as ExecuteUnitTests.py, and 
add the following code:
from test import *

if __name__ == '__main__':
    baseTestsuite = unittest.TestLoader().loadTestsFromTestCase(Te
stingGraph)
    nodeTestsuite = unittest.TestLoader().loadTestsFromTestCase(Te
stingNodes)
    pathTestsuite = unittest.TestLoader().loadTestsFromTestCase(Te
stingPaths)
    baseTestsuite.addTest(nodeTestsuite)
    baseTestsuite.addTest(pathTestsuite)
    unittest.TextTestRunner(verbosity=2).run(baseTestsuite)

And we are done!!!

Now open your console or command prompt and execute py ExecuteUnitTests.
py from the location where you saved it, and you will see the results on the console. 
You can add more test cases or assertions for testing your social network data and 
make it as robust as it should be.

We should also remember that it is good to have a unit test case but it should be 
intelligent enough to cover all scenarios of your codebase.

There are other testing frameworks that can be used to perform 
unit testing, such as http://pytest.org/

In this section, we discussed about the importance of unit testing and also the 
process of defining the unit tests for Neo4j using PyUnit.

Summary
In this chapter, we learned about py2neo as a Python framework for working  
with Neo4j. We talked about various APIs of py2neo and also created social network 
data using the same APIs. We also discussed about the Batch imports provided by 
py2neo and in the end we talked about the process of unit testing of Neo4j graphs 
using PyUnit.

In the next chapter, we will discuss in detail about the RESTful services with Flask 
and py2neo.

www.it-ebooks.info

http://pytest.org/
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 93 ]

Build RESTful Service with 
Flask and Py2neo

The emergence of cloud-computing, and the growing interest in web-hosted 
applications and Representational State Transfer (REST) based web-services 
(also known as RESTful services) have gained popularity that can help both in the 
development of rich user interface clients calling into remote servers and in the 
development of actual servers for manipulating data structures in a client application 
(written in any language) or directly in the browser.

Representational State Transfer is a new software architecture style for networked 
systems consisting of clients and servers.

REST recommends you develop requests and responses around the transfer 
of representation of resources. A resource can be essentially any coherent and 
meaningful concept that is addressed. A representation of a resource is typically  
a document that captures the current or intended state of the resource.

Flask (http://flask.pocoo.org/) is a lightweight Python-based "microframework" 
(http://en.wikipedia.org/wiki/Microframework) available under the BSD 
license (http://en.wikipedia.org/wiki/BSD_licenses) for developing web-
based applications in Python. Flask is simpler and lighter to use as compared 
to other Python-based web frameworks but contains all the required features to 
develop small but powerful applications. Flask is extensible and provides a variety 
of extensions, which further helps in developing robust applications.

Flask-RESTful (https://pypi.python.org/pypi/Flask-RESTful) is one such 
Python-based extension that helps in developing and exposing REST-based APIs 
using Python.

www.it-ebooks.info

http://flask.pocoo.org/
http://en.wikipedia.org/wiki/Microframework
http://en.wikipedia.org/wiki/BSD_licenses
https://pypi.python.org/pypi/Flask-RESTful
http://www.it-ebooks.info/


Build RESTful Service with Flask and Py2neo

[ 94 ]

In the last chapter, we discussed about the integration of Neo4j and py2neo, and in 
this chapter, we will discuss Flask as a framework for building and exposing RESTful 
services using py2neo and Neo4j.

This chapter will cover the following points:

• Introduction and installation of Flask
• Setting up web applications using Flask and Flask-RESTful
• REST APIs for social network data using py2neo

Introducing (and installing) Flask
In this section, we will talk about installing and configuring Flask and its extensions 
required for quick development of web applications.

Python is known for its fast development, easy syntax, and clean code; it provides 
the flexibility for developing applications within minutes, and without worrying 
about complex deployment instructions. The same ideology is leveraged within 
the Python web frameworks where we have a variety of framework choices for 
developing varied kinds of application, ranging from small to complex enterprise 
systems. Flask is one such Python-based, extensible, web-based framework 
and provides quicker development of small and medium-sized but powerful 
applications.

It is based on Werkzeug (http://werkzeug.pocoo.org/)and Jinja2 (http://
quintagroup.com/cms/python/jinja2), and is inspired by Sinatra Ruby 
framework (http://www.sinatrarb.com/).

Flask is called a "microframework" because it keeps the core simple but extensible. 
It has no database abstraction layer, form validation, or any other components 
where pre-existing third-party libraries provide common functions. However, Flask 
is extensible and supports the development of custom extensions over the core 
framework for adding application features as if they were implemented in Flask 
itself. Extensions exist for RESTful services, i18n, NoSQL databases such as CouchDB 
(http://couchdb.apache.org/), authentication/authorizations, and many more. A 
few of the notable features of Flask are as follows:

• In-built development server for hosting web applications and debugger
• Integrated support for unit testing
• RESTful style of request dispatching

www.it-ebooks.info

http://werkzeug.pocoo.org/
http://quintagroup.com/cms/python/jinja2
http://quintagroup.com/cms/python/jinja2
http://www.sinatrarb.com/
http://couchdb.apache.org/
http://www.it-ebooks.info/


Chapter 5

[ 95 ]

• Jinja2 templating
• Support for secure cookies (client-side sessions)
• 100 percent WSGI 1.0 (http://wsgi.readthedocs.org/) compliant
• Compatible with Google App Engine
• Extensive documentation and provision of a wide range of extensions 

(http://flask.pocoo.org/extensions/)

Let's move ahead and learn about the installation of Flask.

Flask and its extensions are hosted in PyPI, so it can be installed via PIP itself. 
Execute the following command on your console or command prompt for installing 
Flask and its RESTful extension for developing RESTful services:

pip install flask Flask-RESTful

Now sit back and relax! It will take a minute or so, depending upon your internet 
speed, for PIP to download, install, and configure Flask, its dependencies, and its 
RESTful extension.

As soon as the process is successfully completed, execute pip list to see the list of 
all Python extensions installed, configured, and ready to use.

And we are done!!!

Nothing else is required with respect to configurations. PIP has done all the 
configurations and now we can start developing web applications using Flask.

Let's move on to the next section and discuss the development of web-based 
applications using Flask.

www.it-ebooks.info

http://wsgi.readthedocs.org/
http://flask.pocoo.org/extensions/
http://www.it-ebooks.info/


Build RESTful Service with Flask and Py2neo

[ 96 ]

Setting up web applications with Flask 
and Flask-RESTful
In this section, we will talk about the basics of developing web applications using 
Flask and Flask-RESTful.

Your first Flask application
As we discussed earlier, Flask is simple and straightforward. There are no complex 
rules or steps for developing web applications in Flask.

Perform the following steps to create your first web application using Flask:

1. Create a module and name it FlaskWebApp.py.
2. Edit FlaskWebApp.py and add the following code:

from flask import Flask
webapp = Flask(__name__)

@webapp.route("/")
def hello():
    return " Hello World!"

if __name__ == '__main__':
    webapp.run(host='0.0.0.0',port=8999,debug=True)

3. Next, open your console or command prompt and execute py FlaskWebApp.
py. You will see something like the next screenshot:

And we are done!!!

Your first application is up and running on port 8999.

Next, you can open your web browser and type http://localhost:8999 in the 
URL navigation bar. You will see "Hello World!" printed on the browser.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 97 ]

Let's understand the preceding piece of code:

• from flask import Flask: This is the first statement in our code where we 
import the class Flask from the package flask.

• webapp = Flask(__name__): In this statement, we have created an object 
of the class Flask with a parameter __name__. The object of Flask acts 
as a nucleus or a registry for accessing the view functions, the URL rules, 
template configuration, and much more. The argument __name__ is the 
name of the application of module where all the web application resources 
such as templates, static files, and so on are available. In our case it is a single 
module, so we can just provide __name__ as a parameter.
For more information, have a look at the Flask documentation at  
http://flask.pocoo.org/docs/0.10/api/#flask.Flask.

It is advisable to instantiate object of Flask object 
in init.py, so that it is available to packages 
and sub-packages.

• @webapp.route("/"): This statement defines a URL pattern which would 
be added to the Flask URL registry. Just below this route method, we need 
to define the function that will be invoked as soon as the user requests the 
provided URL pattern, which in our case is def hello():. This method is 
also called the view function and it needs to return the content which needs 
to be displayed to the user.

• webapp.run(host='0.0.0.0',port=8999,debug=True): Lastly, we execute 
our webapp by invoking the run method of Flask in our __main__ method 
with three parameters:

 ° HOST: This is the IP address or domain name that will be used 
to serve the user request for the web application. It defaults to 
127.0.0.1 and defines the value to 0.0.0.0, so that Flask can  
listen on all network interfaces, not just on localhost.

 ° PORT: This is the port number of the webserver, which is by  
default 5000.

 ° debug=TRUE or debug=FALSE: If set to TRUE then it will print the 
complete stack trace of the errors, else it will just print the error.

Flask also provides the flexibility to define the static and dynamic content.

Let's see the process of presenting our user with the static HTML files or dynamic 
content that can produce results based on user input.

www.it-ebooks.info

http://flask.pocoo.org/docs/0.10/api/#flask.Flask
http://www.it-ebooks.info/


Build RESTful Service with Flask and Py2neo

[ 98 ]

Displaying static content
Web applications also need static files such as HTML, JavaScript, or CSS files. 
Usually, the static files are served by the web servers but Flask also provides the 
additional feature to store and serve them.

We need to create a static folder next to our module and then the files within the 
static folder can be accessed using /static/<name of file>.

Perform the following steps to create a function in our FlaskWebApp that renders  
the static files:

1. Edit your FlaskWebApp and modify the import statements to add the 
redirect function from the flask package and url_for from flask.
helpers. Your import statements will look as follows:
from flask import Flask, redirect
from flask.helpers import url_for

2. Next, define a static folder just parallel to your FlaskWebApp and within 
the static folder, add an HTML file. Name it as staticHTMLFile.html 
with some HTML content.

3. Now define a new function in your FlaskWebApp that will serve this HTML 
file, and will look like the following:
@webapp.route("/static", methods=['GET'])
def showStaticFiles():
    return  
redirect(url_for('static',filename='staticHTMLFile.html'))

And we are done!!!

Open your browser and in the URL navigation bar enter http://localhost:8999/
static/. You will see the static content defined in the HTML staticHTMLFile.
html file.

In this new method we have used three new features:

• methods=["GET"]: Within the route function, we can also provide the 
constraints with respect to the type of HTTP method served by this method/
function. For example, we have defined that our function showStaticFiles 
will be executed only if the HTTP method is of type GET. You can also 
provide multiple HTTP methods separated by a comma.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 99 ]

• url_for: This function is used for computing the URL of the provided 
endpoint. In our case, we provided the name of the folder and name of the 
file for which URL needs to be generated.

• redirect: This function redirects the user/client to the targeted URL/location.

methods=['GET'] of the route() function can also be 
used to develop RESTful web services. Refer to http://
blog.miguelgrinberg.com/post/designing-a-
restful-api-with-python-and-flask.

Displaying dynamic content
Similar to static content, we can also process and display dynamic content in Flask.

Flask leverages Jinja2 (http://jinja.pocoo.org/2/) templating engine for 
rendering templates or dynamic content.

Let's enhance our FlaskWebApp and add features to process and show some  
dynamic content.

Perform the following steps to add capabilities in our WebApp for processing 
dynamic content:

1. Create a folder templates parallel to the folder static.
2. Create a new file in the templates folder and give it the name 

dynamicTemplate.html.
3. Add the following content in your dynamicTemplate.html:

<!DOCTYPE html>
<html><head><meta charset="ISO-8859-1">
<title>Dynamic Template</title>
</head>
<body>
<h1>Hello {{ name }}</h1>
</body></html>

In this template, we have defined {{name}} as the variable that will be 
replaced by the value given by the user.

4. Next, edit your FlexWebApp and define a new import statement as follows:
from flask.templating import render_template

www.it-ebooks.info

http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask
http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask
http://blog.miguelgrinberg.com/post/designing-a-restful-api-with-python-and-flask
http://jinja.pocoo.org/2/
http://www.it-ebooks.info/


Build RESTful Service with Flask and Py2neo

[ 100 ]

5. Next, just above the __main__ function, define a new function the following:
@webapp.route("/showDynamic/<name>")
def renderDynamicContent(name=None):
    return  
render_template('dynamicTemplate.html',name=name)

6. In this function, we are defining a different URL pattern in @webapp.route 
that ends with <name>. This signifies that, along with the URL, the user will 
pass some additional data which will be further processed by the function 
renderDynamicContent(). Next we are passing the content provided by the 
user to our dynamic template by using render_template(…). Now the Jinja 
templating engine will replace the value of name in our dynamicTemplate.
html with the actual value passed on by the user.

7. Next, open a new browser and in the browser navigation bar enter the URL 
http://localhost:8999/showDynamic/Sumit. You will see the dynamic 
content displayed on your browser.

8. You can use all programming constructs in your templates. For example, 
replace the content of the <body></body> tag of your dynamicTemplate.
html with the following, so that it can show some specific content based on 
the value of the variable passed on by the user:
<body>
{%if name == 'Sumit'%}
<h1>Hello {{ name }} - Author of  "Building Python Web Apps  
with Neo4j"!!!</h1>
{% else %}
<h2>Hello {{ name }} !!!</h2>
{% endif %}
</body>

Refer to the http://jinja.pocoo.org/docs/dev/api/ for the complete list of 
programming constructs and syntax available in Jinja2.

Flask provides access to all basic functionality of a web application, where you can 
access the user session, request, response, context, and so on.

Refer to official documentation available at http://flask.pocoo.org/docs/0.10/
quickstart/# for more information about the features provided by Flask.

In this section, we have discussed the basics of developing web applications with 
Flask. Let's move forward and understand about creating/exposing REST APIs  
using the Flask-RESTful extension.

www.it-ebooks.info

http://jinja.pocoo.org/docs/dev/api/
http://flask.pocoo.org/docs/0.10/quickstart/#
http://flask.pocoo.org/docs/0.10/quickstart/#
http://www.it-ebooks.info/


Chapter 5

[ 101 ]

Your first Flask RESTful API
In this section, we will discuss and develop RESTful APIs using Flask-RESTful 
extension.

In recent years, RESTful APIs have become a default and standard architectural 
design pattern for web services. RESTful APIs are developed upon the standard 
HTTP protocol, which defines that all types of user request can be served by the 
default HTTP methods and data is exchanged using JSON (http://en.wikipedia.
org/wiki/JSON), which is lightweight, simple, and easy to understand.

Refer to http://en.wikipedia.org/wiki/Hypertext_Transfer_
Protocol#Request_methods for more information on the type of HTTP methods.

Let's move forward and develop our first RESTful service.

Perform the following steps to create RESTful API:

1. Create a new module FlaskRestfulService.py.
2. Edit FlaskRestfulService.py and define the following import statements:

from flask import Flask
from flask_restful import Api, Resource

3. Now, in FlaskRestfulService.py, just below the import statement, create 
an object of Flask and API:
webapp = Flask(__name__)
api = Api(webapp)

4. Next, define a class HelloWorld(Resource) in your  
FlaskRestfulService.py.

5. Just above the class definition, define @api.resource('/hello'), which will 
bind your class with an endpoint http://<host>:<port>/hello.

You can also bind the REST endpoint by using 
api.add_resource(..) in your __main__ 
method.

6. Next, within HelloWorld, define functions for each HTTP method. For 
example, for HTTP GET, you need to define the following:
def get(self):
return 'Hello - this is GET'

Similarly, define the functions for POST, PUT, and DELETE.

www.it-ebooks.info

http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
http://www.it-ebooks.info/


Build RESTful Service with Flask and Py2neo

[ 102 ]

7. Next, define a __main__ method:
if __name__ == '__main__':
    webapp. run(debug=True)

8. Now open the command prompt or console and start your RESTful service 
by executing py FlaskRestfulService.py.

9. Now open any tool such as SOAP-UI (http://www.soapui.org/),  
which provides creation and execution of REST calls and execute the 
following request:

 ° Request method type: POST or GET or PUT or DELETE
 ° Request URL: http://localhost:5000/hello
 ° Request headers: Accept: application/json; charset=UTF-8  

and Content-Type: application/json

That's all we have to do !!!

Based on your request method type, the Flask-RESTful will invoke and process the 
corresponding method of your class HelloWorld and show the results. For example, 
if you use GET then def get(self): will be executed.

JSON processing
Flask also provides a feature for receiving, processing, and returning back the JSON 
response. It exposes methods such as request.get_json() for retrieving JSON 
data from a request and flask.jsonify(..) for transforming a response into JSON 
format and further sending it back to the users.

For example, let's track the number of users invoking our RESTful service, which we 
developed in the previous example. Perform the following steps for enhancing our 
HelloWorld class for tracking user visits:

1. Edit the module FlaskRRestfulService.py and import flask.jsonify 
and flask.request. Also define a global variable by the name of 
noOfVisitors = 0.

www.it-ebooks.info

http://www.soapui.org/
http://www.it-ebooks.info/


Chapter 5

[ 103 ]

2. Next, modify your HelloWorld.post() method and add the following code 
for reading JSON data and tracking the number of visitors:
def post(self):
        #Retrieve the JSON data from the Request and store it in 
local variable
        jsonData = request.get_json(cache=False)
        #Iterate over the JSON Data and print the data on console
        for key in jsonData:
             import json
            print(json.dumps(jsonData, indent=2, sort_keys=True) )

        #reference to Global Variable
        global noOfVisitors
        #Adding 1 to the global Variable
        noOfVisitors = noOfVisitors + 1
        #Converting the response to JSON and returning back to 
user
        return jsonify(totalVisits = noOfVisitors)

3. Next, save FlaskRRestfulService.py. Restart your application 
by first stopping it by pressing Ctrl + C and then executing py 
FlaskRRestfulService.py on your console or command prompt.

And we are done!!

Now open any tool such as SOAP-UI (http://www.soapui.org/), which provides 
creation and execution of REST calls, and execute the following request:

• Request method type: POST
• Request URL: http://localhost:5000/hello
• Request headers: Accept: application/json; charset=UTF-8 and 

Content-Type: application/json

• JSON request:

{
   "book": "Building Python Web Apps with Neo4j",
   "Author": "Sumit",
   "publication": "PackPub"
}

www.it-ebooks.info

http://www.soapui.org/
http://www.it-ebooks.info/


Build RESTful Service with Flask and Py2neo

[ 104 ]

You will get the JSON response back stating the number of visits of this REST 
service. Also, on your console you will see the attributes of the JSON request  
sent across by the user.

The preceding screenshot shows the results of the JSON response received from our 
RESTful service.

In this section, we talked about developing web-based applications using Flask. 
Further, we also discussed about exposing the RESTful service using Flask-RESTful 
extension. Let's move on to the next section and develop some useful REST-based 
services on our social network data for performing CRUD and search operations, 
using Flask-RESTful and py2neo.

REST APIs for social network data using 
py2neo
In this section, we will discuss and develop RESTful APIs for performing CRUD 
and search operations over our social network data, using Flask-RESTful extension 
and py2neo extension—Object-Graph Mapper (OGM). Let's move forward to first 
quickly talk about the OGM and then develop full-fledged REST APIs over our social 
network data.

ORM for graph databases py2neo – OGM
We discussed about the py2neo in Chapter 4, Getting Python and Neo4j to Talk Py2neo. 
In this section, we will talk about one of the py2neo extensions that provides  
high-level APIs for dealing with the underlying graph database as objects and  
its relationships.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 105 ]

Object-Graph Mapping (http://py2neo.org/2.0/ext/ogm.html) is one of the 
popular extensions of py2neo and provides the mapping of Neo4j graphs in the form 
of objects and relationships. It provides similar functionality and features as Object 
Relational Model (ORM) available for relational databases py2neo.ext.ogm.
Store(graph) is the base class which exposes all operations with respect to graph 
data models. Following are important methods of Store which we will be using in 
the upcoming section for mutating our social network data:

• Store.delete(subj): It deletes a node from the underlying graph along 
with its associated relationships. subj is the entity that needs to be deleted.  
It raises an exception in case the provided entity is not linked to the server.

• Store.load(cls, node): It loads the data from the database node into cls, 
which is the entity defined by the data model.

• Store.load_related(subj, rel_type, cls): It loads all the nodes related 
to subj of relationship as defined by rel_type into cls and then further 
returns the cls object.

• Store.load_indexed(index_name, key,value, cls): It queries the 
legacy index, loads all the nodes that are mapped by key-value, and returns 
the associated object.

• Store.relate(subj, rel_type, obj, properties=None): It defines 
the relationship between two nodes, where subj and cls are two nodes 
connected by rel_type. By default, all relationships point towards the  
right node.

• Store.save(subj, node=None): It save and creates a given entity/node—
subj into the graph database. The second argument is of type Node, which if 
given will not create a new node and will change the already existing node.

• Store.save_indexed(index_name,key,value,subj): It saves the given 
entity into the graph and also creates an entry into the given index for  
future reference.

Refer to http://py2neo.org/2.0/ext/ogm.html#py2neo.ext.ogm.Store for the 
complete list of methods exposed by Store class.

Let's move on to the next section where we will use the OGM for mutating our social 
network data model.

OGM supports Neo4j version 1.9, so all features of Neo4j 2.0 and 
above are not supported such as labels.

www.it-ebooks.info

http://py2neo.org/2.0/ext/ogm.html
http://py2neo.org/2.0/ext/ogm.html#py2neo.ext.ogm.Store
http://www.it-ebooks.info/


Build RESTful Service with Flask and Py2neo

[ 106 ]

Social network application with Flask-RESTful 
and OGM
In this section, we will develop a full-fledged application for mutating our social 
network data and will also talk about the basics of Flask-RESTful and OGM.

Creating object model
Perform the following steps to create the object model and CRUD/search functions 
for our social network data:

1. Our social network data contains two kind of entities—Person and Movies. 
So as a first step let's create a package model and within the model package 
let's define a module SocialDataModel.py with two classes—Person  
and Movie:
class Person(object):
    def __init__(self, name=None,surname=None,age=None,country=No
ne):
        self.name=name
        self.surname=surname
        self.age=age
        self.country=country

class Movie(object):
    def __init__(self, movieName=None):
        self.movieName=movieName

2. Next, let's define another package operations and two python modules 
ExecuteCRUDOperations.py and ExecuteSearchOperations.py.

3. The ExecuteCRUDOperations module will contain the following  
three classes:

 ° DeleteNodesRelationships: It will contain one method each 
for deleting People nodes and Movie nodes and in the __init__ 
method, we will establish the connection to the graph database.
class DeleteNodesRelationships(object):
    '''
    Define the Delete Operation on Nodes
    '''
    def __init__(self,host,port,username,password):
        #Authenticate and Connect to the Neo4j Graph Database
        py2neo.authenticate(host+':'+port, username, 
password)
        graph = Graph('http://'+host+':'+port+'/db/data/')

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 107 ]

        store = Store(graph)
        #Store the reference of Graph and Store.
        self.graph=graph
        self.store=store

    def deletePersonNode(self,node):
        #Load the node from the Neo4j Legacy Index
cls = self.store.load_indexed('personIndex', 'name', node.
name, Person)
         #Invoke delete method of store class
        self.store.delete(cls[0])

    def deleteMovieNode(self,node):
        #Load the node from the Neo4j Legacy Index
  cls = self.store.load_indexed('movieIndex',    'name',node.
movieName, Movie)
        #Invoke delete method of store class
            self.store.delete(cls[0])

Deleting nodes will also delete the associated 
relationships, so there is no need to have functions for 
deleting relationships. Nodes without any relationship 
do not make much sense for many business use cases, 
especially in a social network, unless there is a specific 
need or an exceptional scenario.

 ° UpdateNodesRelationships: It will contain one method each for 
updating People nodes and Movie nodes and, in the __init__ 
method, we will establish the connection to the graph database.
class UpdateNodesRelationships(object):
    '''
     Define the Update Operation on Nodes
    '''

    def __init__(self,host,port,username,password):
        #Write code for connecting to server

    def updatePersonNode(self,oldNode,newNode):
        #Get the old node from the Index
        cls = self.store.load_indexed('personIndex', 'name', 
oldNode.name, Person)
        #Copy the new values to the Old Node
        cls[0].name=newNode.name
        cls[0].surname=newNode.surname

www.it-ebooks.info

http://www.it-ebooks.info/


Build RESTful Service with Flask and Py2neo

[ 108 ]

        cls[0].age=newNode.age
        cls[0].country=newNode.country
        #Delete the Old Node form Index
        self.store.delete(cls[0])
        #Persist the updated values again in the Index
        self.store.save_unique('personIndex', 'name', 
newNode.name, cls[0])

    def updateMovieNode(self,oldNode,newNode):
         #Get the old node from the Index
        cls = self.store.load_indexed('movieIndex', 'name', 
oldNode.movieName, Movie)
        #Copy the new values to the Old Node
        cls[0].movieName=newNode.movieName
        #Delete the Old Node form Index
        self.store.delete(cls[0])
        #Persist the updated values again in the Index
        self.store.save_ unique('personIndex', 'name', 
newNode.name, cls[0])

 ° CreateNodesRelationships: This class will contain methods for 
creating People and Movies nodes and relationships and will then 
further persist them to the database. As with the other classes/ 
module, it will establish the connection to the graph database  
in the __init__ method:

class CreateNodesRelationships(object):
    '''
    Define the Create Operation on Nodes
    '''
    def __init__(self,host,port,username,password):
        #Write code for connecting to server
    '''
    Create a person and store it in the Person Dictionary.
    Node is not saved unless save() method is invoked. 
Helpful in bulk creation
    '''
    def createPerson(self,name,surName=None,age=None,country
=None):
        person = Person(name,surName,age,country)
        return person

    '''
    Create a movie and store it in the Movie Dictionary.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 109 ]

    Node is not saved unless save() method is invoked.  
Helpful in bulk creation
    '''
    def createMovie(self,movieName):
        movie = Movie(movieName)
        return movie

    '''
    Create a relationships between 2 nodes and invoke a local 
method of Store class.
    Relationship is not saved unless Node is saved or save() 
method is invoked.
    '''
    def createFriendRelationship(self,startPerson,endPerson):
        self.store.relate(startPerson, 'FRIEND', endPerson)

    '''
    Create a TEACHES relationships between 2 nodes and invoke 
a local method of Store class.
    Relationship is not saved unless Node is saved or save() 
method is invoked.
    '''
    def createTeachesRelationship(self,startPerson,endPers
on):
        self.store.relate(startPerson, 'TEACHES', endPerson)
    '''
    Create a HAS_RATED relationships between 2 nodes and 
invoke a local method of Store class.
    Relationship is not saved unless Node is saved or save() 
method is invoked.
    '''
    def createHasRatedRelationship(self,startPerson,movie,ra
tings):
        self.store.relate(startPerson, 'HAS_RATED', 
movie,{'ratings':ratings})
    '''
    Based on type of Entity Save it into the Server/ database
    '''
    def save(self,entity,node):
        if(entity=='person'):
            self.store.save_unique('personIndex', 'name', 
node.name, node)
        else:
            self.store.save_unique('movieIndex','name',node.
movieName,node)

www.it-ebooks.info

http://www.it-ebooks.info/


Build RESTful Service with Flask and Py2neo

[ 110 ]

Next we will define other Python module operations, ExecuteSearchOperations.
py. This module will define two classes, each containing one method for searching 
Person and Movie node and of-course the __init__ method for establishing a 
connection with the server:

class SearchPerson(object):
    '''
    Class for Searching and retrieving the the People Node from 
server
    '''

    def __init__(self,host,port,username,password):
        #Write code for connecting to server

    def searchPerson(self,personName):
        cls = self.store.load_indexed('personIndex',  
'name', personName, Person)
        return cls;

class SearchMovie(object):
    '''
    Class for Searching and retrieving the the Movie Node from 
server
    '''
    def __init__(self,host,port,username,password):
        #Write code for connecting to server

    def searchMovie(self,movieName):
        cls = self.store.load_indexed('movieIndex', 'name',  
movieName, Movie)
        return cls;

We are done with our data model and the utility classes that will perform the CRUD 
and search operation over our social network data using py2neo OGM.

Now let's move on to the next section and develop some REST services over our  
data model.

Creating REST APIs over data models
In this section, we will create and expose REST services for mutating and searching 
our social network data using the data model created in the previous section.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 111 ]

In our social network data model, there will be operations on either the Person or 
Movie nodes, and there will be one more operation which will define the relationship 
between Person and Person or Person and Movie.

So let's create another package service and define another module 
MutateSocialNetworkDataService.py. In this module, apart from regular imports 
from flask and flask_restful, we will also import classes from our custom 
packages created in the previous section and create objects of model classes for 
performing CRUD and search operations. Next we will define the different classes or 
services which will define the structure of our REST Services.

The PersonService class will define the GET, POST, PUT, and DELETE operations for 
searching, creating, updating, and deleting the Person nodes.

class PersonService(Resource):
    '''
    Defines operations with respect to Entity - Person
    '''
    #example - GET http://localhost:5000/person/Bradley
    def get(self, name):
        node = searchPerson.searchPerson(name)
        #Convert into JSON and return it back
        return jsonify(name=node[0].name,surName=node[0].
surname,age=node[0].age,country=node[0].country)

    #POST http://localhost:5000/person
    #{"name": "Bradley","surname": "Green","age":  
"24","country": "US"}
    def post(self):

        jsonData = request.get_json(cache=False)
        attr={}
        for key in jsonData:
            attr[key]=jsonData[key]
            print(key,' = ',jsonData[key] )
        person = createOperation.
createPerson(attr['name'],attr['surname'],attr['age'],attr['country'])
        createOperation.save('person',person)

        return jsonify(result='success')
    #POST http://localhost:5000/person/Bradley
    #{"name": "Bradley1","surname": "Green","age": "24","country": 
"US"}
    def put(self,name):
        oldNode = searchPerson.searchPerson(name)

www.it-ebooks.info

http://www.it-ebooks.info/


Build RESTful Service with Flask and Py2neo

[ 112 ]

        jsonData = request.get_json(cache=False)
        attr={}
        for key in jsonData:
            attr[key] = jsonData[key]
            print(key,' = ',jsonData[key] )
        newNode = Person(attr['name'],attr['surname'],attr['age'],att
r['country'])

        updateOperation.updatePersonNode(oldNode[0],newNode)

        return jsonify(result='success')

    #DELETE http://localhost:5000/person/Bradley1
    def delete(self,name):
        node = searchPerson.searchPerson(name)
        deleteOperation.deletePersonNode(node[0])
        return jsonify(result='success')

The MovieService class will define the GET, POST, and DELETE operations for 
searching, creating, and deleting the Movie nodes. This service will not support 
the modification of Movie nodes because, once the Movie node is defined, it does 
not change in our data model. Movie service is similar to our Person service and 
leverages our data model for performing various operations.

The RelationshipService class only defines POST which will create the relationship 
between the person and other given entity and can either be another Person or 
Movie. Following is the structure of the POST method:

  '''
    Assuming that the given nodes are already created this operation
    will associate Person Node either with another Person or Movie 
Node.

    Request for Defining relationship between 2 persons: -
        POST http://localhost:5000/relationship/person/Bradley
        {"entity_type":"person","person.
name":"Matthew","relationship": "FRIEND"}
    Request for Defining relationship between Person and Movie
        POST http://localhost:5000/relationship/person/Bradley
        {"entity_type":"Movie","movie.movieName":"Avengers","relations
hip": "HAS_RATED"
         "relationship.ratings":"4"}
    '''
    def post(self, entity,name):
        jsonData = request.get_json(cache=False)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 113 ]

        attr={}
        for key in jsonData:
            attr[key]=jsonData[key]
            print(key,' = ',jsonData[key] )

        if(entity == 'person'):
            startNode = searchPerson.searchPerson(name)
            if(attr['entity_type']=='movie'):
                endNode = searchMovie.searchMovie(attr['movie.
movieName'])
                createOperation.createHasRatedRelationship(startNo
de[0], endNode[0], attr['relationship.ratings'])
                createOperation.save('person', startNode[0])
            elif (attr['entity_type']=='person' and attr['relationship
']=='FRIEND'):
                endNode = searchPerson.searchPerson(attr['person.
name'])
                createOperation.createFriendRelationship(startNode[0], 
endNode[0])
                createOperation.save('person', startNode[0])
            elif (attr['entity_type']=='person' and attr['relationship
']=='TEACHES'):
                endNode = searchPerson.searchPerson(attr['person.
name'])
                createOperation.createTeachesRelationship(startNo
de[0], endNode[0])
                createOperation.save('person', startNode[0])
        else:
            raise HTTPException("Value is not Valid")

        return jsonify(result='success')

At the end, we will define our __main__ method, which will bind our services with 
the specific URLs and bring up our application:

if __name__ == '__main__':
    api.add_resource(PersonService,'/person','/person/<string:name>')
    api.add_resource(MovieService,'/movie','/
movie/<string:movieName>')
    api.add_resource(RelationshipService,'/relationship','/relationshi
p/<string:entity>/<string:name>')
    webapp.run(debug=True)

www.it-ebooks.info

http://www.it-ebooks.info/


Build RESTful Service with Flask and Py2neo

[ 114 ]

And we are done!!! Execute our MutateSocialNetworkDataService.py as a regular 
Python module and your REST-based services are up and running. Users of this app 
can use any REST-based clients such as SOAP-UI and can execute the various REST 
services for performing CRUD and search operations.

Follow the comments provided in the code samples for the 
format of the request/response.

In this section, we created and exposed REST-based services using Flask, Flask-
RESTful, and OGM and performed CRUD and search operations over our social 
network data model.

Summary
In this chapter, we learned about creating web-based applications using Flask. We 
also used Flasks extensions such as Flask-RESTful for creating/exposing REST APIs 
for data manipulation. Finally, we created a full blown REST-based application over 
our social network data using Flask, Flask-RESTful, and py2neo OGM.

In the next chapter, we will discuss in detail about the integration of Django  
and Neo4j.

www.it-ebooks.info

http://www.it-ebooks.info/


[ 115 ]

Using Neo4j with Django  
and Neomodel

Web frameworks or web application frameworks are the standard, structured,  
and faster way of developing web-based applications that can be exposed over  
the Internet to a wide variety of users.

Django (https://www.djangoproject.com/) is one of the powerful web-based 
frameworks written in Python for rapidly creating Python-based web-enabled 
applications in minutes.

Though there are many other Python web-based frameworks, Django is one of the 
obvious choices for creating enterprise-grade and large-scale systems. Based on  
MVC pattern, Django is fast, secure, and scalable.

Django follows the "batteries included" philosophy of Python (https://docs.
python.org/2/tutorial/stdlib.html#batteries-included), where it provides 
various tools and utilities such as templating, forms, routing, authentication, basic 
database administration, and so on, which makes it easy for the developers to dive  
in and develop web applications in the shortest possible time.

On the other hand, Neomodel (https://github.com/robinedwards/neomodel) is 
the Object Graph Mapper (OGM) framework for Neo4j that is built on py2neo and 
provides the Django model style definition. It provides a powerful query API, along 
with transactions and hooks for Django signals (https://docs.djangoproject.
com/en/1.7/topics/signals/).

In the last chapter, we discussed about Flask for building RESTful APIs. In this 
chapter, we will learn to develop and integrate the Python-based web framework 
Django with Neomodel for building web-based applications over Neo4j.

www.it-ebooks.info

https://www.djangoproject.com/
https://docs.python.org/2/tutorial/stdlib.html#batteries-included
https://docs.python.org/2/tutorial/stdlib.html#batteries-included
https://github.com/robinedwards/neomodel
https://docs.djangoproject.com/en/1.7/topics/signals/
https://docs.djangoproject.com/en/1.7/topics/signals/
http://www.it-ebooks.info/


Using Neo4j with Django and Neomodel

[ 116 ]

This chapter will cover the following points:

• Installing and configuring Neomodel
• Declaring models and properties
• Adding relationships to models
• Running Cypher queries
• Using Neomodel in a Django app

Installing and configuring Neomodel
In this section, we will talk about installing and configuring Neomodel on a virtual 
environment provided by Python.

Py2neo provides the lower-level APIs for interacting with Neo4j, which sometimes 
becomes difficult as a lot of boilerplate code needs to be written for performing 
CRUD or search operation over Neo4j database. Though it provides APIs for dealing 
with all the features of Neo4j version 1.9 or earlier, fundamentally it doesn't provide 
object relational mapping between the entities or nodes. In contrast, Neomodel 
exploits the same py2neo APIs and adds some more code to support the features 
of Neo4j 2.0 and above, such as labels, constraints, and so on, and provides object 
relational mapping for Neo4j entities or nodes. We will discuss this in detail in the 
upcoming sections but let's first look at the basic steps of installing Neomodel.

Neomodel is available in PyPI (https://pypi.python.org/pypi/neomodel), so it can 
be installed using the pip command. However, the latest version of Neomodel, version 
1.0.2, is developed upon py2neo 1.6.4, so if you have already installed py2neo 2.0.5 
then installing Neomodel will downgrade your py2neo version to 1.6.4, which will 
introduce lot of changes in the code which was specifically written for py2neo 2.0.5.

In order to avoid that, we will install Virtual Environment for working with 
Neomodel, which will be totally separate from our original Python environment,  
and we can have different versions of the same software in the same machine.

Perform the following steps to install Virtual Environment on Windows:

1. Open the console or command prompt and use pip to install Virtual 
Environment from Python Repository PyPi for Windows:
pip install virtualenvwrapper-win

2. The command in step 1 will download, install, and configure the Virtual 
Environment utility virtualenvwrapper-win from the Python repository.

www.it-ebooks.info

https://pypi.python.org/pypi/neomodel
http://www.it-ebooks.info/


Chapter 6

[ 117 ]

3. Next, on the same console, define a system environment variable  
WORKON_HOME, which will define the location where all your virtual 
environments and their associated configurations will be saved:
set WORKON_HOME= <location of directory>

4. On the same console, create a virtual environment by executing the  
following command:
mkvirtualenv CH-6-Neomodel

5. After successful completion of the previous command, your virtual 
environment is created and you are also switched to this new environment, 
which is named as CH-6-Neomodel.
This new environment is a raw environment and does not contain any 
Python extensions which we installed while working on examples from 
earlier chapters.

6. Next, we will execute the following command in our new virtual 
environment and install Neomodel:
pip install Neomodel

7. After successful completion of the preceding command, you can also execute 
pip list which will produce the results similar to the following screenshot:

And we are done!!! Our Neomodel is installed and no more configurations  
are required.

www.it-ebooks.info

http://www.it-ebooks.info/


Using Neo4j with Django and Neomodel

[ 118 ]

Examples in the subsequent sections will be executed in the same virtual 
environment. If you closed your console, you can always open a new console and 
execute workon CH-6-Neomodel to again move to your virtual environment.

Refer to https://pypi.python.org/pypi/
virtualenvwrapper-win for other convenient commands 
available for working with Virtual Environments.

Declaring models and properties
In this section, we will discuss creating the model and the properties using various 
APIs exposed by Neomodel. We will also learn about the mapping of the models  
and properties with Neo4j nodes.

Let's move forward and see how Neomodel provides the mapping of Neo4j nodes 
and creates a data model.

Neo4j consists of nodes and these nodes can further have labels and properties. 
Properties in Neo4j can contain String, Numeric, Boolean, or collections of any 
other type of value. Refer to http://neo4j.com/docs/stable/property-values-
detailed.html for the complete list of data types supported by Neo4j.

Neomodel defines all the necessary base classes for mapping Neo4j nodes and 
properties, provides a wrapper over the structure of Neo4j, and provides the  
full-fledged functionality of an object graph mapping.

Defining nodes
Neomodel defines neomodel.StructuredNode as a base class that needs to be 
extended by all the user defined classes, which intend to define the structure of a node 
and further the name the class will be saved as the label for that particular node.

For example, in our social networking data model, we have three types of  
nodes—Male, Female, and Movie. So we need to define three different classes for 
each type of node with the same name as their label names. Let's define a Python 
module by the name of Model.py and within that define the three classes:

from neomodel import (StructuredNode)

class Male(StructuredNode):
    print('Class for Male Nodes')

www.it-ebooks.info

https://pypi.python.org/pypi/virtualenvwrapper-win
https://pypi.python.org/pypi/virtualenvwrapper-win
http://neo4j.com/docs/stable/property-values-detailed.html
http://neo4j.com/docs/stable/property-values-detailed.html
http://www.it-ebooks.info/


Chapter 6

[ 119 ]

class Female(StructuredNode):
    print('Class for Female Nodes')

class Movie(StructuredNode):
    print('Class for Movie Nodes')

Next, we will enhance our data model and define the properties for each of  
the nodes.

Defining properties
Neomodel defines neomodel.Property as the base class that is extended by the 
following classes, providing the mapping between Python and Neo4j property  
data types:

• neomodel.StringProperty: This defines a sequence of Unicode characters, 
which is equivalent to the Python String.

• neomodel.IntegerProperty: This defines an Integer, which is equivalent  
to the Python int (signed Integer).

• neomodel.FloatProperty: This holds a floating point value, which is 
equivalent to float in Python.

• neomodel.BooleanProperty: This defines a Boolean which can be either 
True or False and is equivalent to the Python bool.

• neomodel.ArraryProperty: This defines an array of value, which is 
equivalent to list in Python.

• neomodel.DateProperty: This leverages the Python datetime.date class 
and holds the date.

• neomodel.DateTimeProperty: This is an extension of neomodel.
DateProperty which contains time along with the date.

• neomodel.JSONProperty: This is a special type of property that holds a 
String in JSON format. It leverages the Python JSON module for marshalling 
and un-marshalling the Strings. Refer to https://docs.python.org/3/
library/json.html for more information on handling JSON in Python.

• neomodel.AliasProperty: This is another special type of property that can 
be used to define the aliases to the properties of the given model and can be 
further used in the same fashion as the original properties.

www.it-ebooks.info

https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
http://www.it-ebooks.info/


Using Neo4j with Django and Neomodel

[ 120 ]

While we define or work with these properties, we can also define certain validations 
or integrity constraints on each of these properties:

• unique_index: This is a Boolean value and if defined then a unique 
constraint is created on that property, which is equivalent to unique 
constraints defined by Neo4j (http://neo4j.com/docs/stable/query-
constraints.html).

• index: This is a Boolean value that defines whether the property needs to be 
indexed or not. This helps in faster searching by creating an index in Neo4j 
on the given property (http://neo4j.com/docs/stable/query-schema-
index.html).

• required: This is a Boolean value stating whether the value is required or  
if it can be Null.

• Default: It defines the default value of the property in case the user does not 
provide any value.

Let's enhance our data model and define the properties in our classes Male, Female, 
and Movie, which would look something like the following:

from neomodel import (StructuredNode, StringProperty, IntegerProperty)

class Male(StructuredNode):
    print('Class for Male Nodes')
    #Names should not be Duplicate, so we define it as required
    #and instruct to create a Unique_Index
    name = StringProperty(unique_index=True, required=True)
    surname = StringProperty()
    age = IntegerProperty()
    country = StringProperty(default='US')

class Female(StructuredNode):
    print('Class for Male Female Nodes')
    #Names should not be Duplicate, so we define it as required
    #and instruct to create a Unique_Index
    name = StringProperty(unique_index=True, required=True)
    surname = StringProperty()
    age = IntegerProperty()
    country = StringProperty(default='US')
    ratings = RelationshipTo('Movie', 'HAS_RATED', OneOrMore)

class Movie(StructuredNode):
    print('Class for Movie Nodes')

www.it-ebooks.info

http://neo4j.com/docs/stable/query-constraints.html
http://neo4j.com/docs/stable/query-constraints.html
http://neo4j.com/docs/stable/query-schema-index.html
http://neo4j.com/docs/stable/query-schema-index.html
http://www.it-ebooks.info/


Chapter 6

[ 121 ]

    #Movie Names should not be Duplicate, so we define it as required
    #and instruct to create a Unique_Index
    movieName = StringProperty(unique_index=True, required=True)

And we are done !!!

We have defined the nodes, properties, and integrity constraints that will be part of 
our social data model. Now we have to define the relationships in our data model.

But before that, let's see the various methods exposed by Neomodel for persisting 
our data model and other useful methods for querying it.

Persisting and querying a social data model
In this section, we will discuss persisting and querying our social data model using 
APIs exposed by Neomodel.

Nodes and relationships are the basic entities defined in the graphs and all the other 
features, whether querying, saving, deleting, or updating, revolve around these two 
entities only. Neomodel follows the same concept and provides some useful methods 
in neomodel.StructuredNode for performing various CRUD and search operations.

Let's discuss a few of the useful methods and the rest we will discuss in the 
upcoming sections.

• nodes(): This method is used to provide the object of NodeSet defined in 
Python module Match.py (https://github.com/robinedwards/neomodel/
blob/1.0.2/neomodel/match.py). The NodeSet class provides access to the 
traversals that are used to traverse the graph and search the specific type of 
nodes based on the filtering criteria provided by the user.

• __eq__(node): This returns true if the given node and the node invoking 
this method are equal, else false.

• __ne__(node): This returns false if the given node and the node invoking 
this method are equal, else true.

• labels(): This returns the object of dictionary containing the labels 
associated with the node.

• save(): This persists the node in the Neo4j database.
• delete(): This deletes the node from the Neo4j database.
• refresh(): This reloads or refreshes all properties of the node from the 

Neo4j database.
• cypher(query, params=None): This executes a given Cypher query and 

returns the results.

www.it-ebooks.info

https://github.com/robinedwards/neomodel/blob/1.0.2/neomodel/match.py
https://github.com/robinedwards/neomodel/blob/1.0.2/neomodel/match.py
http://www.it-ebooks.info/


Using Neo4j with Django and Neomodel

[ 122 ]

The __eq__ and __ne__ methods are special methods that 
provide the == and != functionality for objects. They are not 
really meant to be called directly (hence the obscure name).

Now, using the preceding methods, let's create and persist our social data model and 
then finally query/search the Neo4j database.

Perform the following steps for creating the model:

1. Open your Neo4jshell and execute the following Cypher queries to delete 
any existing data from your Neo4j database:
MATCH (n)-[r]-(n1) delete n,r,n1;
MATCH (n) delete n;

2. Next, define a new module ExploreSocialDataModel.py and, within this 
module, define class CreateDataModel().

3. Define a new function createNodes() within CreateDataModel(), which 
will contain the code snippet for creating nodes.

4. Next, create objects of Male, Female, or Movie and define the values of the 
properties. Finally invoke the save() method on each of the Male, Female,  
or Movie objects.
def createNodes(self):
try:
#Creating Males
Male(name='Bradley',surname='Green',age=24,country='US').save()
Male(name='Matthew',surname='Cooper',age=36,country='US').save()
Male(name='John',surname='Goodman',age=24,country='Mexico').save()
Male(name='Ripley',surname='Aniston',country='US').save()
#Creating FeMales
Female(name='Lisa',surname='Adams',age=15,country='Canada').save()
Female(name='Annie',surname='Behr',age=24,country='Canada').save()
#Creating Movies
Movie(movieName='First Blood').save()
Movie(movieName='Avengers').save()
Movie(movieName='Matrix').save()

  except UniqueProperty:
      #Quietly move on as the Nodes already exists.
         Pass

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 123 ]

5. Refer to the Creating a social network with py2neo section of Chapter 4, Getting 
Python and Neo4j to Talk Py2neo, for more details on the structure of social 
data model.

6. Next, from your main method, invoke createNodes() and run your code on 
the console by executing python ExploreSocialDataModel.py.

And we are done!

All our nodes are created and persisted in the Neo4j database. We will talk about 
defining the relationship in the next section, but before that, let's look at how to 
retrieve or search data using Neomodel APIs.

Let's define two utility methods in ExploreSocialDataModel.py to search and 
retrieve the data back from the database:

• searchNodebyUniqueName(name): This method will search all types of 
nodes within our database and see whether the name attribute of the nodes 
matches the value provided by the user. It will use the nodes() method of 
the StructuredNode class to search and provide the results back to the user. 
The structure of this method will be as shown in the following code snippet:
def searchNodebyUniqueName(name):
    try:
        print('Searching for Nodes with Name = ',name)
        #Search all Nodes tagged with Label Male
        node = Male.nodes.get(name=name)
        #if found, Print all its attributes
        print(node.labels(),': Name=',node.name,', Surname=',node.
surname,', Age=',node.age,', Country=',node.country)
        #No need to process further code and return back from 
lthere itself.
        return node
    #DoesNotExist Exception is raised in case nothing is found
    except DoesNotExist:
        pass
    try:
        #Search all Nodes tagged with Label Female
        node = Female.nodes.get(name=name)
        print(node.labels(),': Name=',node.name,', Surname=',node.
surname,', Age=',node.age,', Country=',node.country)
        return node
    #DoesNotExist Exception is raised in case nothing is found
    except DoesNotExist:
        pass

www.it-ebooks.info

http://www.it-ebooks.info/


Using Neo4j with Django and Neomodel

[ 124 ]

    try:
        #Search all Nodes tagged with Label Movie
        node = Movie.nodes.get(movieName=name)
        print(node.labels(),': MovieName=',node.movieName)
        return node
    #DoesNotExist Exception is raised in case nothing is found
    except DoesNotExist:
        pass
    #if it reaches here that means no Nodes exists by the Given 
Name
    print('Sorry...Nothing Found...try again')
    return

We can invoke this method directly from our main method, for example sea
rchNodebyUniqueName('Bradley').

• def filterMalesByAge(age,criteria): This method searches nodes 
tagged with the label Male, based on the provided arguments age and 
criteria, which can be either less, more, or equal. This method utilizes 
the NodeSet.filter(…) for filtering the nodes. Filters in NodeSet define the 
same Django-style filter formats, where you can use the properties with a 
double underscore suffixed with operators.

def filterMalesByAge(age,criteria):

    if(criteria=='more'):
        print('Searching for Males where Age >',age)
        nodes = Male.nodes.filter(age__gt=age)
        for n in nodes:
            print('Name=',n.name,', Surname=',n.surname,', 
Age=',n.age,', Country=',n.country)
        return nodes
    elif(criteria=='less'):
        print('Searching for Males where age <',age)
        nodes = Male.nodes.filter(age__lt=age)
        for n in nodes:
            print('Name=',n.name,', Surname=',n.surname,', 
Age=',n.age,', Country=',n.country)
        return nodes
    else:
        print('Searching for exact Match where Age = ',age)
        nodes = Male.nodes.filter(age=age)
        for n in nodes:
            print('Name=',n.name,', Surname=',n.surname,', 
Age=',n.age,', Country=',n.country)
        return nodes

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 125 ]

We can invoke this method also from our main method, but with  
different criteria:
filterMalesByAge(1,'more')
filterMalesByAge(50,'less')
filterMalesByAge(25,'equal')

Apart from the filters specified in the preceding piece of code, we can also 
use the following filters:

 ° lte: For filtering values which are less than or equal to the  
given criteria

 ° gte: For filtering values which are greater than or equal to the  
given criteria

 ° ne: For filtering values which are not equal to the given criteria

Filtering can be applied to any of the properties of the node or relationship.

In this section, we discussed about the various APIs exposed by Neomodel for 
creating nodes and their associated properties and further discussed the powerful 
search APIs for searching and retrieving the results from the database.

Let's move on to the next section and discuss the process of creating relationships in 
Neomodel. We will enhance our data model and create relationship between males, 
females, and movies.

Adding relationships to models
Neomodel provides the following classes in the neomodel package for defining 
relationships between nodes or entities:

• Relationship: This class is used to define a bi-directional relationship in 
which the "direction" of the relationship does not matter. It can be in any 
direction. For example, in our social data model we are using the FRIEND 
relationship in which direction does not matter, because if one person 
declares being a friend to another then vice-versa is also true.

• RelationshipTo: It is used to define the outgoing relationship.
• RelationshipFrom: It is used to define the incoming relationship.

www.it-ebooks.info

http://www.it-ebooks.info/


Using Neo4j with Django and Neomodel

[ 126 ]

All of these classes accept four parameters and expose the connect() method  
to establish a relationship with the given node. The following is the explanation  
of each parameter required by the relationship classes:

• Class name: This is the name of the class that enjoys the relationship with  
the class in which the relationship is defined.

• Relationship type: This is the type or name of the relationship.
• Cardinality: It defines the number of incoming or outgoing relationships for 

a given entity. It defines three classes to define the cardinality—ZeroOrMore, 
OneOrMore, and One. It raises the CardinalityViolation exception if the 
constraints imposed by cardinality are violated.

• Model: This is used to define the properties of the relationship and should be 
an instance of StructuredRel.

Now let's move on and enhance our social data model Model.py and define 
relationships. Our model contains the following three types of relationships:

• FRIEND: As we discussed earlier, direction does not matter, so we will create 
an object of Relationship and define an attribute to hold the relationship in 
Male and Female domain classes. We need to define two relationship objects 
for each Male and Female, because two males or two females or both a male 
and a female can be friends:
maleFriends = Relationship('Male', 'FRIEND', OneOrMore)
femaleFriends = Relationship('Female', 'FRIEND', OneOrMore)

• TEACHES: This relationship defines a student and teacher relationship which 
does have a direction and, as per our data model, only males are a part 
of this relationship. So here we will use RelationshipTo and define the 
relationship property in the Male domain class:
teacher = RelationshipTo('Male', 'TEACHES', OneOrMore)

• HAS_RATED: This relationship signifies that either a male or a female has 
rated one movie. So here we will use RelationshipTo in both the Male 
and Female domain classes. Also, the HAS_RATED relationship contains the 
property that defines a numeric value to signify the rating provided by the 
male or female. So we have to create another class in Model.py that will 
extend StructuredRel and define property of type Integer:
class Ratings(StructuredRel):
    ratings = IntegerProperty()

The definition of relationship in Male and Female would be:
ratings = RelationshipTo('Movie', 'HAS_RATED', OneOrMore  
,model=Ratings)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 127 ]

Save your model and we are done with all the modifications to our social data 
model. Now let's enhance our CreateDataModel() class and write code for  
creating relationships.

Perform the following steps to create the FRIEND, TEACHES, and HAS_RATED 
relationships between males, females, and movies:

1. Create a new function createFriendRelationship(self).
2. Now, in this function, search the nodes using searchNodebyUniqueName and 

then use the connect() method to create a relationship, as follows:
def createFriendRelationship(self):
        print('Start creating FRIEND Relationship between given 
nodes')
        searchNodebyUniqueName('Bradley').maleFriends.connect(sear
chNodebyUniqueName('Matthew'))
        searchNodebyUniqueName('Bradley').femaleFriends.connect(se
archNodebyUniqueName('Lisa'))
        searchNodebyUniqueName('Matthew').femaleFriends.connect(se
archNodebyUniqueName('Lisa'))
        searchNodebyUniqueName('Lisa').maleFriends.connect(searchN
odebyUniqueName('John'))
        searchNodebyUniqueName('Annie').maleFriends.connect(search
NodebyUniqueName('Ripley'))
        searchNodebyUniqueName('Ripley').femaleFriends.connect(sea
rchNodebyUniqueName('Lisa'))
        print('Finished creating FRIEND Relationship between given 
nodes')

3. Next, we will create a new function createTeachesRelationship(self), 
and in this function search the nodes using searchNodebyUniqueName, and 
then use the connect() method to create a TEACHES relationship, as follows:
def createTeachesRelationship(self):
print('Start creating Student/ Teacher relationship between given 
nodes')
searchNodebyUniqueName('Bradley').teacher.connect(searchNodebyUniq
ueName('Matthew'))
print('Finished creating Student/ Teacher relationship between 
given nodes')

4. Next, we will create a new function rateMovies(self). This function will 
also search the nodes using searchNodebyUniqueName and then use the 
connect() method to create a HAS_RATED relationship, as follows:
def rateMovies(self):
        print('Start Rating movies by Males and Females')
        # Search the Movies which needs to be connected

www.it-ebooks.info

http://www.it-ebooks.info/


Using Neo4j with Django and Neomodel

[ 128 ]

        firstBlood = searchNodebyUniqueName('First Blood')
        avengers = searchNodebyUniqueName('Avengers')
        #Start Rating Movies
        searchNodebyUniqueName('Bradley').ratings.
connect(firstBlood,{'ratings': '5'})
        searchNodebyUniqueName('Matthew').ratings.connect(firstBlo
od,{'ratings':'4'})
        searchNodebyUniqueName('John').ratings.connect(firstBlood,
{'ratings':'4'})
        searchNodebyUniqueName('Annie').ratings.connect(firstBlood
,{'ratings':'4'})
        searchNodebyUniqueName('Ripley').ratings.connect(firstBloo
d,{'ratings':'4'})
        searchNodebyUniqueName('Lisa').ratings.connect(avengers,{'
ratings':'5'})
        searchNodebyUniqueName('Matthew').ratings.connect(avengers
,{'ratings':'4'})
        searchNodebyUniqueName('Annie').ratings.connect(avengers,{
'ratings':'3'})
        print('Finished Rating of movies by Males and Females')

5. Next, we will update our main method and invoke these new functions:
if __name__ == '__main__':
    print('Start')
    create = CreateDataModel()
    create.createNodes()
    searchNodebyUniqueName('Bradley')
    filterMalesByAge(1,'more')
    filterMalesByAge(50,'less')
    filterMalesByAge(25,'equal')
    create.createFriendRelationship()
    create.createTeachesRelationship()
    create.rateMovies()
    print('End')

And we are done!!!

Now open the console or command prompt and execute python 
ExploreSocialDataModel.py. Your complete data model along with relationships 
will be created in the Neo4j database.

In this section, we discussed about the process of defining the relationships using 
Neomodel APIs. Let's move on to the next section and explore the APIs available  
for executing Cypher queries.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 129 ]

Running Cypher queries
In this section, we will talk about executing the raw Cypher queries to handle 
complex requirements and then further converting them into a model and  
presenting it to the end user.

Cypher queries can be executed by the following two ways:

• Using the StructuredNode.cypher(query,params) function
• Using the neomodel.db.cypher_query(query, params) function

In the first option, the query definition needs to be defined within the domain class 
itself and then it uses StructuredNode.inflate() for creating domain objects from 
the raw Cypher results.

For example, let's assume that we need to retrieve and print all the male friends of a 
given node. So we will modify our Model.py and add the following method in the 
Male class:

def getAllMaleFriends(self):
        print('printing All Male friends')
        query = 'START a=node({self}) MATCH (a)-[:FRIEND]-(b:Male) 
RETURN b'
        results, columns = self.cypher(query)
        #Declare a List and then populate it with results
        maleList = []
            for row in results:
              maleList.append(self.inflate(row[0]))
        return maleList

Next, in our ExploreSocialDataModel.py, let's define the following method and 
invoke it from our main method:

def maleFriendsUsingModel():
        male = searchNodebyUniqueName('Bradley')
        people = male.getAllMaleFriends()

        for male in people:
            print(male.name)

www.it-ebooks.info

http://www.it-ebooks.info/


Using Neo4j with Django and Neomodel

[ 130 ]

Now, let's define a new function maleFriends() which does the same thing but 
outside our data model; that is, directly in our ExploreSocialDataModel.py:

def maleFriends():

        query = 'MATCH (a:Male{name: {n0_name}})-[:FRIEND]-(b:Male) 
RETURN b'
        results, columns = db.cypher_query(query,{'n0_
name':'Bradley'})
        for row in results:
            male = Male.inflate(row[0])
            print(male.name)

Next step is to invoke these methods from the main and you will see that the Cypher 
queries will print the results on the console.

In this section, we discussed about the APIs and the options available for fulfilling 
complex requirements by executing raw Cypher queries and then converting them 
back into a model.

Let's move to the next section where we will talk about the integration of Django 
Web frameworks with Neomodel.

Using Neomodel in a Django app
In this section, we will talk about the integration of Django and Neomodel.

Django is a Python-based, powerful, robust, and scalable web-based application 
development framework. It is developed upon the Model-View-Controller (MVC) 
design pattern where developers can design and develop a scalable enterprise-grade 
application within no time.

We will not go into the details of Django as a web-based framework but will 
assume that the readers have a basic understanding of Django and some hands-on 
experience in developing web-based and database-driven applications.

Visit https://docs.djangoproject.com/en/1.7/ 
if you do not have any prior knowledge of Django.

www.it-ebooks.info

https://docs.djangoproject.com/en/1.7/
http://www.it-ebooks.info/


Chapter 6

[ 131 ]

Django provides various signals or triggers that are activated and used to invoke or 
execute some user-defined functions on a particular event.

The framework invokes various signals or triggers if there are any modifications 
requested to the underlying application data model such as pre_save(), post_
save(), pre_delete, post_delete, and a few more.

All the functions starting with pre_ are executed before the requested modifications 
are applied to the data model, and functions starting with post_ are triggered after 
the modifications are applied to the data model. And that's where we will hook our 
Neomodel framework, where we will capture these events and invoke our custom 
methods to make similar changes to our Neo4j database.

We can reuse our social data model and the functions defined in 
ExploreSocialDataModel.CreateDataModel.

We only need to register our event and things will be automatically handled by 
the Django framework. For example, you can register for the event in your Django 
model (models.py) by defining the following statement:

signals.pre_save.connect(preSave, sender=Male)

In the previous statement, preSave is the custom or user-defined method, declared 
in models.py. It will be invoked before any changes are committed to entity Male, 
which is controlled by the Django framework and is different from our Neomodel 
entity.

Next, in preSave you need to define the invocations to the Neomodel entities and 
save them.

Refer to the documentation at https://docs.djangoproject.
com/en/1.7/topics/signals/ for more information on 
implementing signals in Django.

Signals in Neomodel
Neomodel also provides signals that are similar to Django signals and have the  
same behavior. Neomodel provides the following signals: pre_save, post_save,  
pre_delete, post_delete, and post_create.

www.it-ebooks.info

https://docs.djangoproject.com/en/1.7/topics/signals/
https://docs.djangoproject.com/en/1.7/topics/signals/
http://www.it-ebooks.info/


Using Neo4j with Django and Neomodel

[ 132 ]

Neomodel exposes the following two different approaches for implementing signals:

• Define the pre..() and post..() methods in your model itself and 
Neomodel will automatically invoke it. For example, in our social data 
model, we can define def pre_save(self) in our Model.Male class to 
receive all events before entities are persisted in the database or server.

• Another approach is using Django-style signals, where we can define the 
connect() method in our Neomodel Model.py and it will produce the  
same results as in Django-based models:

signals.pre_save.connect(preSave, sender=Male)

Refer to http://neomodel.readthedocs.org/en/
latest/hooks.html for more information on signals 
in Neomodel.

In this section, we discussed about the integration of Django with Neomodel using 
Django signals. We also talked about the signals provided by Neomodel and their 
implementation approach.

Summary
In this chapter, we learned about Neomodel and its various features and APIs 
provided to work with Neo4j. We also discussed about the integration of Neomodel 
with the Django framework.

In the next chapter, we will discuss in detail about the various aspects, 
considerations, and decisions for deploying Neo4j in production.

www.it-ebooks.info

http://neomodel.readthedocs.org/en/latest/hooks.html
http://neomodel.readthedocs.org/en/latest/hooks.html
http://www.it-ebooks.info/


[ 133 ]

Deploying Neo4j  
in Production

Eventually every software needs to be deployed in production and that's where the 
real challenge is!

Deciding upon the deployment strategy for any system requires a careful 
consideration of various factors, such as scalability (number of users now and in 
future), Service Level Agreements (SLAs), fault tolerance, monitoring, backup, 
recovery, and many more. All these factors are also known as Non-Functional 
Requirements (NFRs).

Though many of these factors can be incorporated in the deployment strategy but the 
architecture and design of software plays an important role in meeting the NFRs.

For example, you can increase hardware to support the growing number of users 
but there is a limit to how much computing resources (RAM and CPU) you can add 
to a single machine, and that's where you think about deploying multiple nodes 
and forming a cluster (http://en.wikipedia.org/wiki/Computer_cluster). But 
what if your software architecture does not support distributed processing of the 
transactions?

You may run into issues of data integrity, consistency, or race conditions  
(http://en.wikipedia.org/wiki/Race_condition).

It becomes more complex in enterprises where NFRs such as scalability, performance, 
high availability, backup, and recovery are implicit and in a few scenarios even take 
priority over the functional requirements.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Race_condition
http://www.it-ebooks.info/


Deploying Neo4j in Production

[ 134 ]

In the previous chapters, we have discussed about the various frameworks which 
can help us in designing functional aspects of our software system, developed over 
Neo4j. In this chapter, we will learn about the various features of Neo4j that will  
help us in deploying it to meet the needs of enterprises.

This chapter will cover the following points:

• Neo4j logical architecture
• Neo4j physical architecture
• Monitoring the health of the Neo4j nodes
• Backup and recovery

Neo4j logical architecture
In this section, we will talk about the various layers and the role they perform in the 
overall architecture of Neo4j.

Neo4j is an open source database written in Java and Scala. It implements generic 
property graph models and provides full database characteristics, including ACID 
transaction compliance, cluster support, and runtime failover, making it suitable for 
using graph data in production scenarios.

The following is the high-level logical architecture of Neo4j:

The preceding logical architecture defines the various layers of Neo4j. Let's briefly 
discuss the role and function of each of these layers.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 135 ]

Disk/filesystem
Neo4j is a fully transactional database that supports all properties of ACID. Thus, we 
have to ensure that the file system should also support features such as flush (fsync, 
fdatasync) (http://en.wikipedia.org/wiki/Sync_(Unix)), and therefore Neo4j 
recommends using at least an ext4 filesystem (http://en.wikipedia.org/wiki/
Ext4), but better would be to use ZFS (http://en.wikipedia.org/wiki/ZFS).

Refer to https://structr.org/blog/neo4j-performance-on-
ext4 for more information on performance improvements on ext4.

Disks play an important role in the overall performance of Neo4j and directly 
impacts the Read and Write operations.

• Read operations: Neo4j uses a threaded read access to the database where 
queries can be run simultaneously on as many processors as may be 
available. It recommends to use large memory so that there are far fewer 
reads from disks for common data, but everything cannot be fitted in 
memory; thus, in cases where read operations are served by disks, there also 
it should be reasonably faster. It does not block or lock any read operations; 
thus, there is no danger of deadlocks in read operations and no need for read 
transactions.

• Write operations: Write operations are really a concern with enterprises 
needing highly optimized and efficient processes for initial data loads, backup, 
recovery, and continuous data write operations performed by applications.

Neo4j supports and designs to serve the varied kind of enterprise requirements 
where it provides transactional and ACID-compliant normal operation for all 
multithreaded write operations and at the same time a non-transactional low 
overhead batch inserter for bulk import of large amounts of data. In any case, your 
write operation will depend upon the I/O capacity of the hardware. Henceforth, the 
use of fast SSDs (http://en.wikipedia.org/wiki/Solid-state_drive) is highly 
recommended for production environments.

Record files
Neo4j uses various types of files to store nodes, relationships, and properties. All 
database files are created within the folder on your disks as defined by the property 
in your neo4j-server.properties org.neo4j.server.database.location. All files 
which start with neostore.* contain the actual data about nodes, properties,  
and relationships.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Sync_(Unix)
http://en.wikipedia.org/wiki/Ext4
http://en.wikipedia.org/wiki/Ext4
http://en.wikipedia.org/wiki/ZFS
https://structr.org/blog/neo4j-performance-on-ext4
https://structr.org/blog/neo4j-performance-on-ext4
http://en.wikipedia.org/wiki/Solid-state_drive
http://www.it-ebooks.info/


Deploying Neo4j in Production

[ 136 ]

Let's examine and see the process of data organization and the content of the various 
database files:

• neostore.nodestore.*: This stores information about the nodes. Every 
node you create is stored here, in a simple, fixed-size record of 9 bytes in 
total. The first byte is used as a flag. The next four are an integer, that is, the 
ID of the first relationship of the node. The final four bytes are the integer ID 
of the first property of the node.

• neostore.relationshipstore.*: This stores all the information about 
the relationships between the nodes in a record of 33 bytes. The first byte 
signifies the direction, whether this relationship is directed (1) or not (0). 
Then the next eight bytes are used to define the ID of the two connected 
nodes (four bytes each). The next four bytes are the ID of the record that 
represents the type of relationship. The next 16 bytes are used to define 
the ID of the previous relationship of the first node, the ID of the next 
relationship of the first node, the ID of the previous relationship of the 
second node, and finally the ID of the next relationship of the second node. 
The last four bytes are the ID of the first property of this relationship.

• neostore.relationshiptypestore.*: This contains the names of the 
relationship types. The record size for the type is five bytes. The first is the 
in-use byte and the last four bytes store the ID of the block that stores the 
String—name of the relationship type.

• neostore.propertystore.*: Properties in Neo4j can be assigned to 
both nodes and relationships in the key-value format, in which key is the 
String and value is the Java primitive type or an array of primitive types. 
Each property record is 25 bytes and starts with the in_use byte. The next 
four bytes contain the type of property record followed by the next four 
containing the ID of the property index. The next eight bytes are occupied by 
a long value containing the ID to a DynamicStore that stores the value or the 
actual value. Finally there are two integers of four bytes each, which are IDs 
of the previous and next property of the owning primitive.

• neostore.propertystore.db.index: This record starts with an in_use byte, 
followed by an integer that keeps a property count, and lastly another integer 
that is the ID in a DynamicStore that keeps the property name, resulting in a 
total occupancy of 9 bytes.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 137 ]

The previous figure briefly describes the organization of data (in bytes) in the various 
database files created and maintained by Neo4j.

Transaction logs
Transaction or logical logs in Neo4j are the single source of truth!!!

They maintain a journal of all the events and operations that happen over a Neo4j 
database, which is helpful in scenarios where the database needs to be recovered 
from a crash. Logs are rotated on a preconfigured value defined in neo4j.
properties—keep_logical_logs.

Refer to http://neo4j.com/docs/stable/configuration-logical-logs.html 
for more information on transaction logs.

Caches
Caching is one of the most important component in Neo4j and one that directly 
impacts the read and write performance. Neo4j provides two different types of 
caching layers. One is file buffer cache and the other is object cache.

File buffer cache uses the off heap memory (OS memory) and directly caches the 
Neo4j data files stored on disks. All the writes and reads are performed from these 
caches, which in turn improves the overall throughput. All writes are written to the 
caches and data in these caches are flushed to durable storage only when the logical 
logs are rotated. It also improves the write performance by combining many small 
batches into a single batch that is equivalent to the OS page size.

www.it-ebooks.info

http://neo4j.com/docs/stable/configuration-logical-logs.html
http://www.it-ebooks.info/


Deploying Neo4j in Production

[ 138 ]

The following are the properties which help in configuring the size of caches for 
different Neo4j entities:

Parameter Default value Description
use_memory_mapped_
buffers

True (except 
windows)

Enable use of the operating system's 
memory mapping for storing the file 
buffer cache windows.

neostore.nodestore.
db.mapped_memory 

25M Memory required to store the nodes.

neostore.
relationshipstore.
db.mapped_memory

50M Memory required to store the 
relationships.

neostore.propertystore.
db.mapped_memory

90M Memory required to store the 
properties of the nodes and 
relationships.

neostore.propertystore.
db.strings.mapped_memory

130M Memory allocated for storing 
Strings.

neostore.propertystore.
db.arrays.mapped_memory

130M Memory allocated for storing arrays.

mapped_memory_page_size 1048576 Total size for pages of mapped 
memory.

label_block_size 60 bytes Block size for storing labels 
exceeding the in-lined space in node 
record.
This parameter is only considered at 
the time of store creation, otherwise 
it is ignored.

array_block_size 120 bytes Block size for storing arrays. This 
parameter is only considered at the 
time of store creation, otherwise it is 
ignored.

string_block_size 120 bytes Block size for storing strings. This 
parameter is only considered at the 
time of store creation, otherwise it is 
ignored.

Object cache stores the actual data (nodes, relationship, and properties) in the form 
of objects, which further helps in improving the throughput of graph traversals. 
Unlike file buffer cache, it uses JVM heap space to store the objects. It leverage Java 
Garbage Collector (GC) for cache eviction and uses LRU algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 139 ]

High performance cache (HPC) is another type of object cache, only available with 
the enterprise edition of Neo4j. It provides a higher throughput with less memory 
footprint. It has its own mechanism for cache eviction and does not rely on the 
garbage collector.

Caching can be configured by modifying the value of cache_type in neo4j.
properties. The following are the possible values of the cache_type parameter:

Parameter Description
None Do not use any caching.
Soft Default caching for Neo4j community edition. Provides 

optimal utilization of memory but may run into GC issues in 
case of high loads and insufficient memory to hold complete 
graph in memory.

Weak Based on the available memory, cached objects are evicted 
from time to time. Good for large graphs.

Strong Never evicts or releases the objects from cache. Good for 
small graphs which can be stored in JVM heap.

Hpc Only available with Neo4j Enterprise edition and provides 
a high throughput for reads and writes along with optimal 
utilization of available memory.

Refer to http://neo4j.com/docs/stable/configuration-
caches.html for more details on caching.

Core Java API
Neo4j is written in Java and Scala, and hence it directly exposes certain core APIs 
that can be directly used by JVM-based languages for working with graphs.

• Graph database: The APIs within this category contain various classes for 
dealing with the basic operations of the graph databases, such as creating 
database, nodes, labels, and so on. The org.neo4j.graphdb package is the 
base package for all the APIs dealing with the graph operations.

• Query language (org.neo4j.cypher.export): This contains the classes for 
executing Cypher queries from the Java code.

• Graph algorithms (org.neo4j.graphalgo): This defines the classes for 
invoking various graph algorithms.

www.it-ebooks.info

http://neo4j.com/docs/stable/configuration-caches.html
http://neo4j.com/docs/stable/configuration-caches.html
http://www.it-ebooks.info/


Deploying Neo4j in Production

[ 140 ]

• Management (org.neo4j.jmx): As the name suggests, it contains JMX APIs 
for monitoring Neo4j database.

Enterprise version of Neo4j comes with a new package 
org.neo4j.management, which is used to provide 
advanced monitoring.

• Tooling (org.neo4j.tooling): This provides classes for performing  
global operations.

• Imports (org.neo4j.unsafe.batchinsert): This contains packages and 
classes for performing batch imports.

• Graph matching: This contains the packages and classes for pattern matching 
and filtering. It contains two packages—org.neo4j.graphmatching and 
org.neo4j.graphmatching.filter.

Enterprise edition provides one more package—org.
neo4j.backup—for performing various backups such 
as online, cold and so on, on the Neo4j database.

Traversal framework
Neo4j provides a callback API for traversing the graph based on certain rules 
provided by the users. Basically, the users can define an approach to search a graph 
or subgraph which depends upon certain rules and algorithms such as depth-first or 
breadth-first.

The following are certain pre-built algorithms that can be used for graph traversals:

• Shortest path: Returns algorithm that finds the shortest path between the 
two given nodes. For more information refer to http://en.wikipedia.org/
wiki/Shortest_path_problem.

• All paths: Returns algorithm that finds all possible paths between the two 
given nodes.

• All simple paths: Returns algorithm that finds all simple paths of a certain 
length between the given nodes.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
http://www.it-ebooks.info/


Chapter 7

[ 141 ]

• Dijkstra: Returns algorithm that finds the path with lowest cost between two 
given nodes. For more information, refer to http://en.wikipedia.org/
wiki/Dijkstra's_algorithm.

• A*: Returns algorithm that finds the cheapest path between two given 
nodes. For more information, refer to http://en.wikipedia.org/wiki/A*_
search_algorithm.

Refer to http://neo4j.com/docs/stable/tutorial-
traversal-java-api.html and http://neo4j.
com/docs/stable/rest-api-traverse.html for more 
information on the use of traversals with REST.

REST API
Neo4j REST architecture is one of the well-crafted and well-designed architectures. 
Designed on principles of service discoverability, it exposes the "service root"  
and from there the users can discover other URIs to perform various CRUD  
and search operations.

All endpoints are relative to http://<HOST>:<PORT>/db/data/ which is also known 
as the "service root" for the other REST end points. You can simply fire the service 
root using GET operations and it will show its other REST endpoints.

The default representation for all types of request (POST/PUT) and response  
is JSON.

In order to interact with the JSON interface, the users need to explicitly set  
the request header as Accept:application/json and Content-Type: 
application/json.

Refer to http://neo4j.com/docs/stable/rest-api.html 
for more information on REST endpoints exposed by Neo4j.

In this section, we discussed logical architectures and various layers of Neo4j,  
which will help us in understanding and planning our deployments in an efficacious 
manner. Let's move forward and discuss the physical architecture of Neo4j which is 
another important aspect of deployment.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Dijkstra's_algorithm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm
http://neo4j.com/docs/stable/tutorial-traversal-java-api.html and http://neo4j.com/docs/stable/rest-api-traverse.html
http://neo4j.com/docs/stable/tutorial-traversal-java-api.html and http://neo4j.com/docs/stable/rest-api-traverse.html
http://neo4j.com/docs/stable/tutorial-traversal-java-api.html and http://neo4j.com/docs/stable/rest-api-traverse.html
http://neo4j.com/docs/stable/rest-api.html
http://www.it-ebooks.info/


Deploying Neo4j in Production

[ 142 ]

Neo4j physical architecture
Neo4j physical architecture, also known as Neo4j HA architecture,  provides a robust 
and scalable architecture and is a fits best for the needs of enterprises.

It mainly provides the following features:

• High availability
• Fault tolerance
• Data replication

Let's discuss the preceding features and also the advanced settings for enabling 
clustering in Neo4j.

High availability
Neo4j HA architecture provides clustering of Neo4j servers and implements a 
master-slave architecture.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 143 ]

As shown in the previous screenshot, each Neo4j instance has two parts—Neo4j 
HA database and cluster manager. Neo4j HA database is responsible for storing 
and retrieving the data, and cluster manager is responsible for ensuring a highly 
available and fault-tolerant cluster. Neo4j HA database directly communicates  
to the other instances for data replication with the help of the cluster manager.

The following are the features provided by cluster manager:

• Maintaining and tracking of live and dead nodes
• Enabling of data replication from master node by polling at regular intervals
• Electing master node
• Exposing system health and monitoring via JMX beans

All nodes in a cluster are self-sufficient and any node, either slave or master, can 
be used for reading data from the database; but all writes have to be persisted or 
relayed through the master node. Although you can still connect to the slave nodes 
and relay your write requests but before returning success, they will direct all 
requests to the master node; only once the master node confirms the success, then 
only the client will receive a success response. So it is always advisable to relay all 
writes to the master node while reads can be performed from any node.

Neo4j also provides linear scalability where we can add nodes to the existing cluster 
and data is asynchronously replicated to the new nodes.

The following configuration is required in <$NEO4J_HOME>\conf\neo4j-server.
properties for enabling the cluster:

• org.neo4j.server.database.mode enables or disables the clustering of 
Neo4j server. To enable, modify the value to HA.
Refer to Chapter 1, Your First Query with Neo4j for all other configuration 
parameters for defining server-IDs and nodes in a cluster.

Neo4j HA or clustering is only supported in Neo4j 
Enterprise version.

www.it-ebooks.info

http://www.it-ebooks.info/


Deploying Neo4j in Production

[ 144 ]

Fault tolerance
Neo4j provides the custom implementation of multi-paxos paradigm (http://
en.wikipedia.org/wiki/Paxos_%28computer_science%29#Multi-Paxos),  
which provides the following features:

• Cluster management:
 ° Tracking of leaving or joining nodes, that is checking the heartbeat of 

the other participating nodes in a cluster and keeping a track of last 
sync and its availability

 ° Message broadcasting and replication
 ° Electing and choosing master node

• Assisting the Neo4j HA database in transaction propagation and  
data replication

You can also read more about Paxos at http://research.microsoft.com/en-us/
um/people/lamport/pubs/paxos-simple.pdf.

Although reads can be served even with a single node, when it comes to writes, it is 
essential to have a quorum of nodes available in a cluster.

Whenever a Neo4j database instance becomes unavailable, the other database 
instances in the cluster will detect that and mark it as temporarily failed.

Once the failed instance is available and ready to serve user requests, it is 
automatically synched up with the other nodes in the cluster.

If the master goes down then another (best-suited) member will be elected and have 
its role switched from slave to master after a quorum has been reached within the 
cluster. Writes are blocked during the election process of the master node.

For all those cases where a quorum is not available and we still want to elect a 
master, Neo4j provides arbiter nodes, which can be deployed for achieving the 
quorum. Arbiter nodes do not contain the data and don't serve the read or write 
requests. They are used only in the election of the master node with the single 
purpose of breaking ties.

Arbiter instances are configured in the same way as Neo4j HA members are 
configured in the conf\neo4j.properties file. The following command is  
used to start an arbiter instance:

<$NEO4J_HOME>\bin\neo4j-arbiter start

www.it-ebooks.info

http://en.wikipedia.org/wiki/Paxos_%28computer_science%29#Multi-Paxos
http://en.wikipedia.org/wiki/Paxos_%28computer_science%29#Multi-Paxos
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://www.it-ebooks.info/


Chapter 7

[ 145 ]

In cases where the new master performs some changes to the data before the old 
master recovers, there will be two "branches" of the database after the point where 
the old master became unavailable. The old master will move away its database (its 
"branch") and download a full copy from the new master. It will then be marked as 
available and added as a slave node in the cluster.

Data replication and data locality
Neo4j HA architecture asynchronously replicates the data to other nodes in a cluster. 
All write operations are first performed by the master node and then the slave nodes 
are synchronized, or they poll the new data from the last checkpoint from the master 
node. The behavior of data replication is driven by the following properties, defined 
in <$NEO4J_HOME>\conf\neo4j.properties:

• ha.pull_interval: The interval at which slaves will pull updates from the 
master. Unit is in seconds.

• ha.tx_push_factor: Amount of slaves the master will try to push to a 
transaction before returning success to client. We can also set this to 0, 
which will switch off the synchronous data writes to the slave node and 
would eventually increase the write performance. However, this would 
also increase the risk of data loss, as the master would be the only node 
containing the transaction.

• ha.tx_push_strategy: This should be either fixed or round_robin. It 
means the priority of nodes, which will be selected to push the events. In the 
case of fixed, the priority is decided based on the value of ha.server_id, 
which is further based on the principle of highest first.

All write transaction on a slave will be first synchronized with the master. When the 
transaction commits, it will be first committed on the master and, if successful, then 
it will be committed on the slave. To ensure consistency, the slave has to be updated 
and synchronized with the master before performing a write operation. This is built 
into the communication protocol between the slave and master, so that updates are 
applied automatically to a slave node communicating with its master node.

Neo4j provides the full data replication on each node, so that each node is self-
sufficient to serve read and write requests. It also helps in achieving low latency. 
In order to serve a global audience, additional Neo4j servers can be configured as 
read-only slave servers and these servers can be placed near to the customer (may 
be geographically). These slave read-only servers are synced up with the master in 
real time and all local read requests are directed and served by these read-only slave 
servers, which provides data locality for our client applications.

www.it-ebooks.info

http://www.it-ebooks.info/


Deploying Neo4j in Production

[ 146 ]

Advanced settings
Let's discuss about the advanced settings exposed by Neo4j that should be 
considered for any production deployments.

<$NEO4J_HOME>\conf\neo4j-server.properties: Neo4j server configuration file:

Parameter Default value Description
org.neo4j.server.
webserver.address

0.0.0.0 Client accept the pattern for the 
webserver. By default, it accepts 
connection only from local boxes. Defines 
IP address of the box for accepting 
remote connections.
Defining it to 0.0.0.0 accepts 
connection from all addresses, not just 
from local boxes.

org.neo4j.server.
webserver.maxthreads

200 Controlling the concurrent request 
handled by the webserver.

org.neo4j.server.
transaction.timeout

60 Timeouts for orphaned transactions.

<$NEO4J_HOME>\conf\neo4j.propoerties: Low-level configurations for  
Neo4j database:

Parameter Default value Description
Read_only False Boolean value for enabling read mode or 

write mode. By default it is in write mode.
Cache_type Soft Defines the type of cache used to store the 

nodes and relationships:
none: Do not use any cache.
soft: LRU cache using soft references. Used 
when application load isn't very high.
weak: LRU cache using weak references. Used 
when application is under heavy load with 
lots of reads and traversals.
strong: Will hold on to all data that gets 
loaded and never release it. Use it when your 
graph is small enough to fit in memory.
hpc: High-performance cache, which is only 
available with the Enterprise version of Neo4j.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7

[ 147 ]

Parameter Default value Description
dump_configuraton False Logs all configuration parameters at the time 

of server start up.

query_cache_size 100 Number of Cypher query execution plans to 
be cached.

keep_logical_logs 7 days Logical transaction logs for being able to 
backup the database. It is used to specify the 
threshold to prune logical logs.

logical_log_
rotation_threshold

25M Size of the file which will be used to  
auto-rotate the logical log file after a certain 
threshold. Value of 0 means there is no 
rotation based on size of file.

Apart from the previous properties, we can also configure and tune the JVM by 
defining the configurations such as type of GC, GC logs, max and min memory,  
and so on in <$NEO4J_HOME>\conf\neo4j-wrapper.conf.

In this section, we discussed about the physical layout of the Neo4j server and 
database. We also talked about setting up a high availability cluster and fault  
tolerant cluster.

Let's move forward and discuss the various monitoring options provided by Neo4j.

Monitoring the health of the Neo4J nodes
In this section, we will talk about the various aspects of monitoring exposed  
by Neo4j.

www.it-ebooks.info

http://www.it-ebooks.info/


Deploying Neo4j in Production

[ 148 ]

Neo4j browser
Neo4j exposes the REST endpoints which can be used to query the configuration of 
our server and database, and to make it simpler Neo4j Browser incorporates these 
REST endpoints and facilitates the execution of these REST endpoints in few clicks.

The previous screenshot shows the various options available in Neo4j Browser to 
query the configuration and health of your Neo4j database and server.

Webadmin
Webadmin was replaced with Neo4j Browser in Neo4j 2.0 release but it is still 
packaged and available. However, no enhancements or bug fixes are planned for the 
webadmin in upcoming releases.

You can still access webadmin by pointing your browser to http://
localhost:7474/webadmin and you will see a nice dashboard providing high-level 
statistics. You can further explore and click on Server Info to get more information 
and statistics about your Neo4j database/server.

www.it-ebooks.info

http://localhost:7474/webadmin
http://localhost:7474/webadmin
http://www.it-ebooks.info/


Chapter 7

[ 149 ]

The following screenshot shows the dashboard displayed by webadmin:

JMX beans
Neo4j Browser and webadmin are good tools for monitoring, but that is not enough 
for enterprise class systems, where we need detailed monitoring, statistics, and 
options to modify certain configuration at runtime without restarting the server.

Neo4j exposes JMX beans for advanced level of monitoring and management, which 
not only expose the overall health of our Neo4j server and database but also provide 
certain operations, which can be invoked over live Neo4j instance and that too 
without restarting the server. Most of the monitoring options exposed through  
JMX beans are only available with the Enterprise version of Neo4j.

For more information on JMX, please refer to http://
www.oracle.com/technetwork/java/javase/tech/
javamanagement-140525.html.

Java provides JConsole (http://docs.oracle.com/javase/7/docs/technotes/
guides/management/jconsole.html) which is packaged with standard JDK 7 
distribution for viewing, modifying, and invoking the attributes or operations 
exposed by JMX beans. JConsole is also leveraged for viewing the overall health of 
our system where it exposes the various memory statistics such as heap, non-heap, 
threads JVM configurations, classes loaded in VM, and active threads and their 
current state.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
http://www.it-ebooks.info/


Deploying Neo4j in Production

[ 150 ]

Let's move forward and discuss the configurations required for enabling JMX beans 
via JConsole for viewing the various monitoring attributes exposed by Neo4j.

Perform the following steps to view JMX beans and JConsole in remote mode in 
Windows OS. For Linux, replace the forward slash \ with backward slash /; the 
remaining steps will remain the same.

1. Open <$NEO4J_HOME>\conf\neo4j-wrapper.conf and enable the following 
properties:
wrapper.java.additional=-Dcom.sun.management.jmxremote.port=3637
wrapper.java.additional=-Dcom.sun.management.jmxremote.
authenticate=true
wrapper.java.additional=-Dcom.sun.management.jmxremote.ssl=false
wrapper.java.additional=-Dcom.sun.management.jmxremote.password.
file=conf/jmx.password
wrapper.java.additional=-Dcom.sun.management.jmxremote.access.
file=conf/jmx.access

All the preceding properties define the configuration of JMX beans, such as 
communication port, username and password files, and so on.

2. Next we need to modify the username and password for connecting JMX 
server remotely. Open <$NEO4J_HOME>\conf\jmx.access and uncomment 
the line control readwrite. Uncommenting this line will enable the admin 
role for the JMX beans and you can modify and invoke the operations 
exposed by Neo4j JMX beans.

3. Now we will add username and password in jmx.password. Open 
<$NEO4J_HOME>\conf\jmx.password and, at the end of the file, enter 
control <space><password> like control Sumit, where the first word is 
the username and second is the password. Username should match with the 
entry made in the jmx.access file.

4. We also need to make sure that the permissions for conf\jmx.password 
is 0600 in Linux. Open the console and execute sudo chmod 0600 conf\
jmx.password in Linux, and for Windows follow the instructions defined 
at http://docs.oracle.com/javase/7/docs/technotes/guides/
management/security-windows.html.

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/technotes/guides/management/security-windows.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/security-windows.html
http://www.it-ebooks.info/


Chapter 7

[ 151 ]

5. In your Windows console, execute <$JAVA_HOME>\bin\jconsole and select 
Remote Process. In the text box, enter localhost:3637, the username as 
control and the password as Sumit.

And we are done! Click on Connect and you will be able to see the UI of JConsole 
exposing the health statistics of your system along with the MBeans exposed  
by Neo4j.

The following screenshot shows the various management beans exposed by Neo4j:

In this section, we discussed about the various options and tools available for 
monitoring our Neo4j server and database. Let's move forward and discuss other 
enterprise concerns such as backup and recovery.

www.it-ebooks.info

http://www.it-ebooks.info/


Deploying Neo4j in Production

[ 152 ]

Backup and recovery
In this section, we will talk about options available for performing backups and 
restoring Neo4j database.

Backup and recovery is another challenge for distributed systems. Neo4j provides 
tools and utilities for performing online backup and recovery, which is in sync with 
the enterprise operational needs. It provides <$NEO4J_HOME>\bin\neo4j-backup as 
a command-line utility for performing the full and incremental/hot backups.

The following steps need to be performed to enable backups:

• Enabling online backup: online_backup_enabled should be enabled in 
<$NEO4J_HOME>\conf\neo4j.properties.

• Full backup: Create a blank directory on the machine where you want to 
take the full backup and run the following backup tool:
<$NEO4J_HOME>\bin\neo4j-backup -host <IP-ADDRESS> -port <PORT#> 
-to <DIR location on remote server>.

• Incremental backup: Run the same command that we used to take the  
full backup and neo4j-backup will only copy the updates from the last 
backup. Incremental backups can fail when the provided directory does not 
have a valid backup or if the previous backup is from the older version of 
Neo4j database.

Refer to http://neo4j.com/docs/stable/backup-
introduction.html for more information on backups 
in Neo4j.

• Recovering database from backup: Modify the org.neo4j.server.
database.location property in <$NEO4J_HOME>\conf\neo4j-server.
properties and provide the location of the directory where the backup  
is stored, and restart your Neo4j server. Depending upon the size of your 
data, it may take some time but eventually it will be up-and-running within 
few minutes.

Refer to http://neo4j.com/docs/stable/backup-
restoring.html for more information on restoring the 
Neo4j database from backups.

www.it-ebooks.info

http://neo4j.com/docs/stable/backup-introduction.html
http://neo4j.com/docs/stable/backup-introduction.html
http://neo4j.com/docs/stable/backup-restoring.html
http://neo4j.com/docs/stable/backup-restoring.html
http://www.it-ebooks.info/


Chapter 7

[ 153 ]

Summary
In this chapter, we learned and discussed about the various production deployment 
aspects of Neo4j, such as physical and logical architecture, file layouts, and data 
organization on the physical devices, monitoring, and backup and recovery.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


[ 155 ]

Index
A
A* algorithm

about  141
URL  141

aggregation functions
reference link  29

AGGREGATION operation  29
Agile

URL  88
all paths algorithm  140
all simple paths algorithm  140
arbiter nodes  144
Atomicity, Consistency, Isolation,  

Durability (ACID)  1

B
backup

about  152
enabling, steps  152
references  152

base64
converting, URL  17

basic anatomy, Cypher  24
Batch API

URL  87
BSD license

URL  93

C
caches

about  137
properties  138

cluster manager
features  143

Community Edition
about  8
installing, as Linux service  11, 12
installing, as Linux tar / standalone  

application  10, 11
uses  8

computer cluster
reference link  133

core Java API
about  139
graph algorithms (org.neo4j.graphalgo)  139
graph database  139
graph matching  140
imports (org.neo4j.unsafe.batchinsert)  140
management (org.neo4j.jmx)  140
query language  

(org.neo4j.cypher.export)  139
tooling (org.neo4j.tooling)  140

cost based optimizer (CBO)  62
CouchDB

URL  94
CREATE operation  30
create, read, update, and delete  

(CRUD operations)  26
CREATE UNIQUE clause  56
Cypher

about  23, 24
and SQL, comparing  3-5
API, URL  81
ASCII Pattern feature  24
Declarative feature  24
execution phases  25, 26
features  24
statements, URL  86
SQL Familiarity feature  24
structure  26

www.it-ebooks.info

http://www.it-ebooks.info/


[ 156 ]

Cypher queries
basic anatomy  24
running  129, 130

Cypher query, optimizations
about  58, 64-66
execution plan  62, 63
indexes  59-61
index, sampling  61

D
database files  136
Database Management System (DBMS)  45
data types, Cypher

reference link  30
delete operation  32
Dijkstra algorithm

about  141
URL  141

Django
Neomodel, using  130, 131
signals, URL  115
URL  115, 130, 131

E
Enterprise Edition

Enterprise subscriptions  9
personal license  8
startup program  9

execution phases, Cypher
about  25
execution plan  25
initial node(s), locating  26
parsing  25
plan, analyzing  62, 63
relationships, selecting  26
relationships, traversing  26
validating  25
values, modifying  26
values, returning  26

ext4 filesystem
reference link  135

extensions, Flask
reference link  95

Extreme Programming
URL  88

F
fault tolerance  144
Flask

about  93
installing  94, 95
URL  93, 97

Flask application
about  96
creating, steps  96, 97
dynamic content, displaying  99, 100
static content, displaying  98, 99

Flask RESTful API
about  101
creating, steps  101, 102
JSON Processing  102-104

G
Garbage Collector (GC)  138
general clauses

limit clause  37
order by clause  37
skip clause  37
UNION ALL clause  38
UNION clause  38
using, with patterns  36
WITH clause  37, 38

General Public License (GPL)
URL  8

GitHub
URL  68

Graph API
URL  71

graph models, components
about  2
labels  6
nodes  5
properties  6
relationship  6

graphs  23
Gremlin

URL  24

www.it-ebooks.info

http://www.it-ebooks.info/


[ 157 ]

H
high availability  13  142, 143
high performance cache (HPC)  139
HTTP methods

URL  101

I
indexes  59-61
installing

Flask  94, 95
instance  9
Integrated Development Environment  

(IDE)  69

J
JConsole

URL  149
Jinja2

URL  94
JMX beans  149-151
JSON Processing, Flask RESTful  

API  102-104
Junit

URL  88

L
labels

nodes with  48, 49
updating  58

limit clause  37
Linux/Unix

Community Edition, installing  9, 10
Enterprise Edition, installing  12

logical architecture, Neo4j
about  134
caches  137-139
core Java API  139
disk/filesystem  135
record files  135-137
REST API  141
transaction logs  137
traversal framework  140

M
MATCH construct  27, 28
MERGE clause  56
MERGE operation  31
metaweb query language (MQL)

URL  24
Model-View-Controller (MVC)  130

N
Neo4j

about  8, 23
Community Edition  8
Community Edition, installing on Linux/

Unix  9
configuring  8
Enterprise Edition  8
Enterprise Edition, installing on Linux/

Unix  12
licensing  8
monitoring  147
releases, URL  10
REST Batch API, URL  86
server configuration file,  

parameters  146, 147
subscription, URL  9
URL  8, 70, 118

Neo4j browser
about  20
queries, running from  20, 21

Neo4j logical architecture
about  134
caches  137-139
core Java API  139, 140
disk/filesystem  135
record files  135-137
REST API  141
transaction logs  137
traversal framework  140

Neo4j physical architecture
about  142
advanced settings  146
data locality  145
data replication  145
fault tolerance  144

www.it-ebooks.info

http://www.it-ebooks.info/


[ 158 ]

features  142
high availability  142, 143

Neo4j REST interface
about  16
authentication  16, 17
authorization  16
CRUD operations  17-19

Neo4j shell
options  14
using  14, 15

Neomodel
configuring  116-118
installing  116-118
nodes, defining  118, 119
properties, defining  119-121
PyPI, URL  116
relationships, adding to models  125-128
signals  131
social data model, persisting  121-125
social data model, querying  121-125
URL  115, 132
using, in Django app  130

nodes
about  46
constraints, working with  56
CREATE UNIQUE clause  55
defining  118, 119
label, updating  58
MERGE clause, creating  56
multiple nodes  48
properties, updating  57
single node  46, 47
unique nodes, creating  55
with full paths  55
with labels  48, 49
with properties  49, 50
working with  39-43

Non-Functional Requirements (NFRs)  133

O
Object Graph Mapper (OGM)

URL  115
Object Relational Model (ORM)

about  105
for graph databases py2neo  105

online transaction processing (OLTP)   1

OPTIONALMATCH statement  28
Oracle Java 7

URL, for download  9, 12
order by clause  37

P
Path API

URL  83
patterns

about  32
for labels  34
for nodes  34
for properties  35
for relationships  34, 35
general clauses, using with  36
pattern matching  32
using, in where clause  36
where clause, using with  35

Paxos
reference link  144

physical architecture, Neo4j
about  142
advanced settings  146
data locality  145
data replication  145
fault tolerance  144
high availability  142, 143

PIP
URL  69

pre-built algorithms, for graph traversals
A*  141
all paths  140
all simple paths  140
Dijkstra  141
shortest path  140

probabilistic model  2
properties

data types  50
defining  119-121
nodes with  49, 50
relationships with  54
URL  120

py2neo
Batch imports  86, 87
configuring  68
installing  68-70

www.it-ebooks.info

http://www.it-ebooks.info/


[ 159 ]

prerequisites  68, 69
used, for creating social network  83-86

py2neo APIs
Authentication API  71, 72
Cypher queries  77-79
Graph API  70, 71
Node class  72-75
Paths  81, 82
Relationship class  75-77
transactions  80, 81

PyPy
URL  67

pytest
URL  91

Python
about  67, 94
URL  68, 115

Python Package Index (PPI)  68
Python Packaging Authority (PYPA)  69

R
race condition

reference link  133
read operations

about  27, 135
AGGREGATION  29
MATCH  27, 28
OPTIONALMATCH  28
START  28, 29

record files  135-137
recovery  152
relational models  2
relationships

about  51
adding, to models  125-128
multiple relationships  52-54
single relationship  51, 52
unique relationships, creating  55
updating  58
with full paths  55
with properties  54
working with  39-43

remove operation  32

Representational State Transfer  
(REST) API  

about  93, 141
for social network data, py2neo  104
URL  20, 141

S
sample dataset

creating, steps  33, 34
Service Level Agreements (SLAs)  133
SET operation  31
shortest path algorithm

about  140
reference link  140

Sinatra Ruby framework
URL  94

skip clause  37
social data model, Neomodel

persisting  121-125
querying  121-125

social network
creating, py2neo used  83-86

social network application, with  
Flask-RESTful and OGM

about  106
object model, creating  106-110
REST APIs, creating over data  

model  110-114
SQL

and Cypher, comparing  3-5
and graph databases, similarities  2

SQL alike  25
SQL developers

graphs, using  2
SQL models

graph structures, evolving from  5-7
standard deviation  29
START query  28, 29

T
Test Drive Development (TDD)

URL  88
Transactional Cypher HTTP Endpoint  20

www.it-ebooks.info

http://www.it-ebooks.info/


[ 160 ]

transaction logs
about  137
reference link  137

transaction management
principles  45

traversal framework  140

U
UNION ALL clause  38
UNION clause  38
unit testing  88-91
update operation  30

V
values, cache_type parameter

Hpc  139
None  139
Soft  139
Strong  139
Weak  139

W
webadmin

about  148
URL, for accessing  148

web applications
setting up, with Flask  96
setting up, with Flask-RESTful  96

Werkzeug
URL  94

where clause
patterns, using in  36
using, with patterns  35

WITH clause  37, 38
write operation  135

Z
ZFS

reference link  135

www.it-ebooks.info

http://www.it-ebooks.info/


Thank you for buying  
Building Web Applications with Python and Neo4j

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/


Learning Neo4j
ISBN: 978-1-84951-716-4            Paperback: 222 pages

Run blazingly fast queries on complex graph datasets 
with the power of the Neo4j graph database

1. Get acquainted with graph database systems 
and apply them in real-world use cases.

2. Get started with Neo4j, a unique NoSQL 
database system that focuses on tackling data 
complexity.

3. A practical guide filled with sample queries, 
installation procedures, and useful pointers  
to other information sources.

Learning Cypher
ISBN: 978-1-78328-775-8             Paperback: 162 pages

Write powerful and efficient queries for Neo4j with 
Cypher, its official query language

1. Improve performance and robustness  
when you create, query, and maintain  
your graph database.

2. Save time by writing powerful queries  
using pattern matching.

3. Step-by-step instructions and practical 
examples to help you create a Neo4j  
graph database using Cypher.

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/


Neo4j High Performance
ISBN: 978-1-78355-515-4            Paperback: 192 pages

Design, build, and administer scalable graph database 
systems for your applications using Neo4j

1. Explore the numerous components that provide 
abstractions for pretty much any functionality 
you need from your persistent graphs.

2. Familiarize yourself with how to test the 
GraphAware framework, along with working 
in High Availability mode.

3. Get an insight into the internal working of 
Neo4j and learn about some useful tools, 
administrative configurations, and security 
tweaks built for it.

wxPython 2.8 
Application Development Cookbook
ISBN: 978-1-84951-178-0             Paperback: 308 pages

Quickly create robust, reliable, and reusable 
wxPython applications

1. Develop flexible applications in wxPython.

2. Create interface translatable applications that 
will run on Windows, Macintosh OSX, Linux, 
and other UNIX like environments.

3. Learn basic and advanced user interface 
controls.

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Your First Query with Neo4j
	Thinking in graphs for SQL developers
	Comparing SQL and Cypher
	Evolving the graph structures from the SQL models

	Licensing and configuring – Neo4j
	Licensing – Community Edition
	Licensing – Enterprise Edition
	Installing Neo4J Community Edition on 
Linux/Unix
	Installing as a Linux tar / standalone application
	Installing as a Linux service

	Installing Neo4j Enterprise Edition on Unix/Linux

	Using the Neo4j shell
	Introducing the Neo4j REST interface
	Authorization and authentication
	CRUD operations

	Running queries from the Neo4j browser
	Summary

	Chapter 2: Querying the Graph with Cypher
	Basic anatomy of a Cypher query
	Brief details of Cypher
	Cypher execution phases
	Parsing, validating, and generating the execution plan
	Locating the initial node(s)
	Selecting and traversing the relationships
	Changing and/or returning the values

	The structure of Cypher
	Read operations
	The create or update operations
	The delete operation


	Pattern and pattern matching
	Sample dataset
	Pattern for nodes
	Pattern for labels
	Pattern for relationships
	Pattern for properties
	Using the where clause with patterns
	Using patterns in the where clause

	Using general clauses with patterns
	The order by clause
	The limit and skip clauses
	The WITH clause
	The UNION and UNION ALL clauses

	Working with nodes and relationships

	Summary

	Chapter 3: Mutating Graph with Cypher
	Creating nodes and relationships
	Working with nodes
	Single node
	Multiple nodes
	Node with labels
	Node with properties

	Working with relationships
	Single relationships
	Multiple relationships
	Relationships with properties

	Nodes and relationships with full paths
	Creating unique nodes and relationships
	CREATE UNIQUE and MERGE
	Working with constraints

	Transforming nodes and relationships
	Updating node properties
	Updating a label
	Updating relationships

	Cypher query optimizations
	Indexes
	Index sampling

	Understanding execution plans
	Analyzing and optimizing queries

	Summary

	Chapter 4: Getting Python and Neo4j to Talk Py2neo
	Installing and configuring py2neo
	Prerequisites
	Installing py2neo

	Exploring py2neo APIs
	Graph
	Authentication
	Node
	Relationship
	Cypher
	Transactions
	Paths

	Creating a social network with py2neo
	Batch imports
	Unit testing
	Summary

	Chapter 5: Build RESTful Service with Flask and Py2neo
	Introducing (and installing) Flask
	Setting up web applications with Flask and Flask-RESTful
	Your first Flask application
	Displaying static content
	Displaying dynamic content

	Your first Flask RESTful API
	JSON processing


	REST APIs for social network data using py2neo
	ORM for graph databases py2neo – OGM
	Social network application with Flask-RESTful and OGM
	Creating object model
	Creating REST APIs over data models


	Summary

	Chapter 6: Using Neo4j with Django and Neomodel
	Installing and configuring Neomodel
	Declaring models and properties
	Defining nodes
	Defining properties
	Persisting and querying a social data model

	Adding relationships to models
	Running Cypher queries
	Using Neomodel in a Django app
	Signals in Neomodel

	Summary

	Chapter 7: Deploying Neo4j  in Production
	Neo4j logical architecture
	Disk/Filesystem
	Record files
	Transaction logs
	Caches
	Core Java API
	Traversal framework
	REST API

	Neo4j physical architecture
	High availability
	Fault tolerance
	Data replication and data locality
	Advanced settings

	Monitoring the health of the Neo4J nodes
	Neo4j Browser
	Webadmin
	JMX beans

	Backup and recovery
	Summary

	Index



